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Abstract: The geometrical structure of space entered astronomy in the second half of the nineteenth century, but 
slowly and hesitantly.  Although in this period non-Euclidean geometry became a very important branch of mathe-
matics, it aroused little interest among the astronomers.  Nonetheless, there were more contributors to ‘non-
Euclidean astronomy’ than usually supposed, and their attempts to forge links between the new geometries and the 
astronomical sciences merit attention.  While some astronomers, such as R.S. Ball and K. Schwarzschild, discussed 
the observational evidence for curved space, in one case the hypothesis was used to solve a cosmological problem, 
namely, Olbers’ Paradox.  This paper reviews developments from N.I. Lobachevsky in 1829 to P. Harzer in 1908. 
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1  INTRODUCTION 
 

In the early part of the nineteenth century it was recog-
nized that Euclid‘s parallel postulate is not true by 
necessity and that there exist other geometries than the 
Euclidean system.  A small group of mathematicians 
argued that the geometrical structure of physical space 
can be determined only by empirical means such as 
astronomical measurements.  One might believe that 
astronomers eagerly took up the challenge, but this is 
not what happened.  By and large, curved space was a 
non-subject in nineteenth-century astronomy.  Only 
with Einstein‘s General Theory of Relativity did the 
curvature of space (or space-time) enter significantly 
into to the physical and astronomical sciences.  
 

Although non-Euclidean geometry only played a 
very limited role in astronomy before Einstein, it was 
not completely ignored.  A handful of astronomers 
investigated the possibility that space might be curved, 
a hypothesis that in the first decade of the twentieth 
century was well known and had permeated even into 
the more popular literature.  For example, the recog-
nized and widely-read Newcomb-Engelsmanns Popu-
läre Astronomie included a brief account of finite, 
positively-curved space (Kempf, 1911: 664).  A re-
view of the development from about 1830 to 1910 
reveals a history that is richer and more interesting 
than what can be found in most histories of either 
astronomy or mathematics. 
 
2  FROM GAUSS TO LOBACHEVSKY 
 

―Maybe in another life we shall attain insights into the 
essence of space which are now beyond our reach.  
Until then we should class geometry not with arith-
metic, which stands purely a priori, but, say, with 
mechanics …‖ (Gauss, 1900: 177; my English trans-
lation).  Thus wrote Karl Friedrich Gauss (1777–1855) 
in a letter of 28 April 1817 to the Bremen astronomer 
Heinrich Wilhelm Olbers (1758–1840), thereby indi-
cating that ordinary Euclidean geometry was not true 
by necessity.  The following year, while serving as 
Director of the Göttingen Observatory, Gauss was re-
quested to undertake a major cartographic survey pro-
ject with the purpose of mapping the state of Hanover 
(to which Göttingen belonged) by means of tri-
angulation.  As part of this project he made geodetic 
measurements of unprecedented precision of a triangle 
extending between three mountain peaks.  The sides  
of the Brocken-Hohenhagen-Inselsberg triangle were 

approximately 69, 85 and 107 km.  For a long time it 
was generally believed that the theoretical purpose of 
these measurements was to test the assumption of Eu-
clidean geometry, namely, to establish whether or not 
the sum of the angles in the triangle deviated from 
180°.  This is a myth that can still be found in the 
mathematical and astronomical literature.  However, 
historians of science agree that Gauss‘ work had no-
thing to do with the possibility of physical space being 
non-Euclidean (Breitenberger, 1984; Miller, 1972).  
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 

Figure 1: The Russian stamp of 1956 commemor-
ating the centenary of Lobachevsky’s death. 

 
The non-Euclidean geometry anticipated by Gauss 

was discovered independently 1829–1831 by János 
Bolyai (1802–1860) in Hungary and Nikolai Ivanovich 
Lobachevsky (1792–1856) in Russia.  While both of 
the two mathematicians reached the insight that the 
truth of Euclidean geometry was a question to be 
determined empirically, it was only the ten years older 
Lobachevsky who contemplated the problem within an 
astronomical perspective and further developed it (Fig-
ure 1).  He suspected that the truth of geometry ―… 
can only be verified, like all other laws of nature, by 
experiment, such as astronomical observations …‖ 
(Engel, 1898: 67; my English translation; cf. Vucinich, 
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1962).  As a young student at Kasan University, Loba-
chevsky had studied astronomy under the Austrian 
Johann Joseph Littrow (1781–1840), who in 1810 had 
established an Astronomy Department at the Univer-
sity and later became Director of the Vienna Observa-
tory.  Recognizing the outstanding mathematical abili-
ties of his student, Littrow made some astronomical 
observations with him.  For example, in the summer of 
1811 they observed a large comet.  From 1819, Loba-
chevsky served as the Director of the Kasan University 
Observatory.  Although a mathematician, he was thus 
well acquainted with astronomical theory and practice. 
 

Already in his 1829 memoir in the Kasan Messenger 
―On the Principles of Geometry‖ Lobachevsky sug-
gested an astronomically testable consequence of his 
‗imaginary‘ (or hyperbolic) geometry.  It can be shown 
that for any triangle the difference of the angle sum (α 
+ β + γ)  from 180° is given  by the product  of the 
space curvature K and the area δ of the triangle: 
 

      K               (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: The title page of the French edition of Lobachevsky’s 
Pangeometry.  

 

In the case of hyperbolic or Lobachevskian space, 
the curvature is negative.  As Lobachevsky pointed 
out, this implies that the angle sum of a triangle is 
always less than 180° and the more so the bigger the 
triangle becomes.  He reasoned that this prediction 
might be checked by considering the parallax of stars 
such as 29 Eridani, Rigel and Sirius.  For the last-
mentioned star he quoted a parallax value of 1.24″ 
recently published by the French amateur astronomer 
François-Clément D‘Assa-Montardier (1828; 1769–
1840). 
 

Lobachevsky concluded that the angle sum of the 
triangle spanning the Sun, the Earth and Sirius devi-
ated from the Euclidean value of 180° by at most 
0.000372″.  As was only recognized much later, due to 
some mistake or misprint, the value he gave in 1829 
was too large, as it should have been only 0.00000372″ 
(Brylevskaya, 2008: 132).  At any rate, the tiny devi-
ation strongly suggested that space was Euclidean, and 

yet Lobachevsky refrained from drawing this conclus-
ion in firm terms (Bonola, 1955: 94-96; Daniels, 
1975).  Realizing that while it could in principle be 
proved that astronomical space is non-Euclidean, it 
could never be proved to be Euclidean, so he tended to 
see his calculations as inconclusive.  In any case, at the 
time no reliable determination of a stellar parallax had 
been made.  Only in 1838 did Friedrich Wilhelm Bes-
sel (1784–1846) succeed in finding an annual parallax 
of 0.3136″ for the star 61 Cygni, corresponding to a 
distance from the Earth of 657,000 AU.  The modern 
value of the parallax of Sirius is 0.37″, less than a third 
of the value adopted by Lobachevsky.  In another line 
of reasoning, Lobachevsky showed that, if the world 
geometry is hyperbolic, the radius of curvature must 
be greater than 3 × 105 AU. 
 

Lobachevsky also discussed the relevance of his 
new geometry to astronomical space in later publica-
tions, such as his Pangeometry, which was published 
in Russian in 1855 and translated into French in 1856, 
the year of his death (Figure 2).  He wrote: ―The 
distances between the celestial bodies provide us with 
a means for observing the angles of triangles whose 
edges are very large …‖ (Lobachevsky, 2010: 76).  
Consider a triangle spanned by a star and the two 
positions of the Earth half a year apart in its orbit 
around the Sun.  Let the angle at the star be denoted α 
and the two angles at the positions of the Earth be β 
and γ.  Then the parallax angle, p, can be expressed as 
 

 p   (  )  K               (2) 
 

While in Euclidean space (K = 0) the parallax tends 
toward zero as the distance increases toward infinity 
(   0 ), Lobachevsky realized that there must be a 
minimum parallax for all stars irrespective of their 
distances from the Earth.  His general conclusion was 
that since the deviation from flat space was smaller 
than the errors of observation, Euclidean geometry was 
a perfect approximation for all practical purposes. 
 
3  RIEMANNIAN SPACE 
 

The ideas of non-Euclidean geometry circulated slow-
ly in the mathematical community and only became 
generally known about 1870, chiefly through the 
works of Eugenio Beltrami (1835–1899), Hermann 
von Helmholtz (1821–1894) and Felix Klein (1849–
1925).  By that time it was realized that there are three 
possible geometries of constant curvature K, a quantity 
that has the dimension of an inverse area.  It relates to 
the radius of curvature R by  

  
R2 

k

K
.               (3) 

 

The curvature constant, k, distinguishes between flat or 
Euclidean space (k = 0), spherical space (k = +1) and 
hyperbolic space (k = –1).  The possibility of a posi-
itively-curved space was recognized by the German 
mathematician and physicist Bernhard Riemann (1826 
–1866) in a famous address of 1854 in which he put 
the concept of curvature as an intrinsic property of 
space on a firmer basis and effectively founded dif-
ferential geometry.  Of relevance here is that Riemann 
(1873: 36) was the first to point out that, in the case of 
constant positive curvature, the traditional identifica-
tion of a finite three-dimensional space with a bounded 
space is unwarranted.  Infinity does not follow from 
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space being unbounded, he said, for  
 

… if we assume independence of bodies from position, 
and therefore ascribe to space constant curvature, it 
must necessarily be finite provided this curvature has 
ever so small a positive value. (ibid.). 

 

It is only in retrospect that Riemann‘s address, 
which remained unpublished until 1867, has become a 
classic of non-Euclidean geometry.  In fact, although 
he may have known of Lobachevsky‘s work, he did 
not refer to it and also did not mention the contri-
butions of Bolyai.  He only alluded in passing to 
astronomy:  
 

If we suppose that bodies exist independently of posi-
tion, the curvature is everywhere constant, and it then 
results from astronomical measurements that it cannot 
be different from zero; or at any rate its reciprocal must 
be an area in comparison with which the range of our 
telescopes may be neglected. (Riemann, 1873: 36).  

 

According to Riemann, the metrical structure of space 
was likely to be of relevance to microphysics, at the 
atomic or molecular level, but he did not take an inter-
est in the space of the astronomers.  Questions about 
the global properties of space he cut short as ―… idle 
questions.‖ (Riemann, 1873: 37). 
 

Riemann‘s emphasis on the possibility of an un-
bounded yet finite space failed to attract the attention 
of astronomers.  Only in 1872 did the Leipzig astro-
physicist Johann Carl Friedrich Zöllner (1834–1882) 
make astronomical—or rather cosmological—use of 
Riemann‘s insight.  Primarily known for his pioneer-
ing contributions to astrophotometry, Zöllner also car-
ried out important work in spectroscopy, solar physics, 
stellar evolution and the theory of comets. After 1877 
he focused on what he called ‗transcendental physics‘, 
the study of spiritualist phenomena based on the post-
ulate of a fourth space dimension.  As one might ex-
pect, this line of work created so much public attention 
that it damaged his scientific reputation (see Kragh, 
2012). 
 

Acquainted with the mathematical literature on non-
Euclidean geometry, in his book Über die Natur der 
Cometen Zöllner (1872: 308-314) argued that cosmic 
space might well be positively curved (Figure 3).  He 
considered Riemann‘s idea the key that would unravel 
the secrets of the Universe and dissolve the problems 
of a materially-finite Universe, for ―… it opens up for 
the deepest and most fruitful speculations concerning 
the comprehensibility of the world.‖ (Zöllner, 1872: 
312; my English translation).  According to Zöllner,  
 

The assumption of a positive value of the spatial curva-
ture measure involves us in no way in contradictions 
with the phenomena of the experienced world if only its 
value is taken to be sufficiently small. (Zöllner, 1872: 
308; my English translation).  

 

Based on the assumption of a Riemannian Universe 
with only a finite number of stars, he could explain 
Olbers‘ Paradox without having to assume interstellar 
absorption of starlight or taking recourse to a limita-
tion of either cosmic time or space (see Jaki, 1969: 
158-164).  Zöllner‘s aim was not only to demonstrate 
how an astronomical problem could be solved on the 
basis of Riemann‘s hypothesis, but more generally to 
argue for a closed cosmic space.  He suggested that the 
laws of nature might be derived from the dynamical 
properties of curved space.  

Zöllner‘s book, Über die Natur der Cometen, 
attracted much attention in Germany and was reprinted 
in 1883 and 1886.  Nonetheless, Zöllner‘s pioneering 
contribution to cosmology is not well known, and it 
was even less well known in the nineteenth century.  
While it attracted some interest among German 
philosophers, it was either unknown or ignored by his 
colleagues in physics and astronomy.  For this reason, 
and also because I have recently described Zöllner‘s 
Universe in detail (Kragh, 2012), I shall pass on to 
other attempts to apply ideas of non-Euclidean geo-
metry in astronomical contexts. 
 

4  ROBERT STAWELL BALL  
 

During the last quarter of the nineteenth century, non-
Euclidean geometry became a ‗hot topic‘ in mathemat-
ics and philosophy, and was discussed in hundreds of 
books and scientific papers.  On the other hand, the 
number of astronomers who expressed interest in the 
topic can be counted on the fingers of one hand.  
Moreover,  the interest  rarely went  beyond  uncommit-  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Zöllner’s 1872 treatise on the theory of comets, 
which included a chapter advocating a closed Riemannian 
Universe. 
 

ted comments.   One of those who did express a  more 
substantial interest was the Irish astronomer Robert 
Stawell Ball (1840–1913), who in 1874 was appointed 
Royal Astronomer of Ireland and Professor of Astron-
omy at the University of Dublin, a position that in-
cluded the Directorship of the Dunsink Observatory.  
Then from 1892 until his death in 1913 he served as 
Lowndean Professor of Astronomy and Geometry at 
Cambridge University, succeeding John Couch Adams 
(1819–1892) of Neptune fame (Ball, 1915; MacPher-
son, 1914).  Sharing his scientific work between math-
ematical physics and astronomical observations, he 
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was also a well-known and much-esteemed author of 
popular astronomy in the Victorian tradition. 
 

While at Dunsink, Ball directed a large-scale obser-
vational research programme in determining stellar 
parallaxes.  Among the problems that faced astrono-
mers in this area was the choice of comparison stars 
for parallax measurements, by taking into account the 
proper motions of the stars.  Ball and his collaborators 
paid particular attention to the star 61 Cygni that 
Bessel had originally used in his discovery of the 
annual parallax.  In a lecture given to the Royal Instit-
ution in London on 11 February 1881, he discussed the 
complex questions of comparison stars and proper 
motions in relation to parallax measurements.  At the 
end of the lecture, he briefly alluded to the nature of 
space:  
 

If space be hyperbolic the observed parallax is smaller 
than the true parallax, while the converse must be the 
case if space be elliptic.  The largest triangle accessible 
to our measurements has for base a diameter of the 
earth‘s orbit, and for vertex a star.  If the defect of the 
sum of the three angles of such a triangle from two 
right angles be in any case a measurable quantity, it 
would seem that it can only be elicited by observations 
of the same kind as those which are made use of in 
parallax investigations. (Ball, 1881: 92).  

 

What Ball called the ―… true parallax …‖ is the angle 
under which the radius of the orbiting Earth appears 
for an observer located at a star; the ―… observed par-
allax …‖, on the other hand, is half the annual change 
of the angular distance between the star and some 
comparison star close to it.  
 

Ball was well acquainted with non-Euclidean geo-
metry, but his remarks in the 1881 address had the 
character of an afterthought rather than a serious pro-
posal for investigating the geometry of space by astro-
nomical means.  He did not return to the subject in his 
later scientific work, but, characteristically, chose to 
mention it only in his popular books.  One of these was 
In the High Heavens, a book published in 1893.  Ball 
discussed in a general way whether space is finite or 
infinite, a question which  
 

 … is rather of a metaphysical complexion … [and] 
depends more on the facts of consciousness than upon 
those of astronomical observation … (Ball, 1893: 247; 
cf. Whiting, 2011: 143-158).  

 

Having argued that the number of matter particles in 
the Universe must be finite, he proceeded to space 
itself and the possibility of ―… a space which is finite 
in dimensions.‖ (Ball, 1893: 251).  With this he did not 
mean a finite-dimensional space, but rather a three-
dimensional spherical space.  Although Ball did not 
explicitly endorse a positively-curved space, he stress-
ed that it was consistent and intuitively acceptable.  
Indeed, he expressed sympathy for the hypothesis, 
which  
 

… provides the needed loophole for escape from illog-
icalities and contradictions into which our attempted 
conceptions of [infinite] space otherwise land us. (Ball, 
1893: 252).  

 

In this context may be mentioned also the American 
mathematician James Edward Oliver (1829–1895), 
Professor at Cornell University, who according to 
George Halsted (1853–1922) was ―… a pronounced 
believer in the non-Euclidean geometry.‖ (Halsted, 
1895: 545).  Halsted recalled how Oliver tried to con-

vince him that astronomical evidence pointed to space 
being closed.  On one occasion, Oliver 
 

… explained a plan for combining stellar spectroscopy 
with ordinary parallax determinations, and expressed 
his disbelief that C.S. Pierce [sic] had proved our space 
to be of Lobachévsky‘s kind, and his conviction that 
our universal space is really finite, therein agreeing 
with Sir Robert Ball.  (Halsted, 1895: 545). 

 

It remains unknown what Oliver‘s ideas were, more 
precisely, since he never published on the subject. 
 
5  NEWCOMB’S ELLIPTIC SPACE 
 

The distinguished American astronomer Simon New-
comb (1835–1909) took an interest in non-Euclidean 
geometry, both from a mathematical and an astronomi-
cal point of view.  As early as 1877, at a time when he 
had just become Superintendent of the Nautical Al-
manac Office, he published a mathematical paper on 
the geometry of space with positive curvature, but 
without relating his investigation to astronomy (New-
comb, 1877).  Newcomb‘s space was not quite the 
same as Riemann‘s, but described by what soon be-
came known as  ‗elliptic geometry‘ (and to which Ball 
referred in the quotation above).  While in spherical or 
Riemannian space all geodesics from a given point 
intersect again at a distance πR, in elliptic space two 
geodesics can have only one point in common.  In the 
latter case the largest possible distance between two 
points is ½πR, whereas it is πR in the spherical case.  
Both spaces are finite, but for the same radius of 
curvature the volumes differ.  Today spherical space is 
often seen as a special case of the elliptic space. 
 

Newcomb (1877: 299) pointed out that 
 

… there is nothing within our experience which will 
justify a denial of the possibility that the space in which 
we find ourselves may be curved in the manner here 
described. 

 

On the other hand, he seems to have been reluctant to 
part with the infinite Euclidean space.  On some occa-
sions he mentioned the possibility of curved physical 
space, but in popular contexts only and without taking 
it too seriously.  In the widely-read Popular Astrono-
my, a book first published in 1878 that over the next 
twenty years went through many editions (and was 
translated into German, Russian and Norwegian), he 
discussed what would happen with the heat of the Sun.  
Would it forever be lost?  Or would it, if space were 
curved, eventually return to the Sun?  He wrote: 
 

Although this idea of the finitude of space transcends 
our fundamental conceptions, it does not contradict 
them and the most that experience can tell us in the 
matter is that, though space be finite, the whole extent 
of the visible universe can be but a very small fraction 
of the sum total of space … (Newcomb, 1878: 505). 

 

But Newcomb did not believe in the possibility of a 
positively-curved space in which the solar heat would 
return to its source.  On the contrary, he dismissed the 
hypothesis as ―… too purely speculative to admit of 
discussion.‖ (Newcomb, 1878: 504). 
 

Many years later, in an address given to the Amer-
ican Mathematical Society on 29 December 1897, 
Newcomb dealt in a general way with what he called 
the philosophy of ‗hyperspace‘, a concept that include-
ed non-Euclidean spaces as well as spaces with more 
than three dimensions.  As he pointed out, the hypoth-
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esis of curved space was testable, if more in principle 
than in practice:  
 

Unfortunately, we cannot triangulate from star to star; 
our limits are the two extremes of the earth‘s orbit.  All 
we can say is that, within those narrow limits, the 
measures of stellar parallax give no indication that the 
sum of the angles of a triangle in stellar space differs 
from two right angles. (Newcomb, 1898: 7).  

 

He continued with an argument that effectively ruled 
out elliptic space as more than a speculation, at least as 
seen from the astronomer‘s perspective:  
 

If our space is elliptical, then, for every point in it – the 
position of our sun, for example – there would be, in 
every direction, an opposite or polar point whose locus 
is a surface at the greatest possible distance from us.   A 
star in this point would seem to have no parallax.  
Measures of stellar parallax, photometric determina-
tions and other considerations show conclusively that if 
there is any such surface it lies far beyond the bounds 
of our stellar system. (Newcomb, 1898: 7). 

 
6  PEIRCE, A COMMITTED NON-EUCLIDEAN 
 

Newcomb‘s cautious ideas about non-Euclidean space 
form an instructive contrast to those of his compatriot 
and friend, Charles Sanders Peirce (1839–1914; Figure 
4).  Although today mostly known as a philosopher, as 
a young man Peirce was primarily recognized as a 
promising astronomer and chemist.  While at Harvard 
College Observatory he did important work in photo-
metry and spectroscopy, and he was among the first to 
study the spectrum of an aurora, which he did as early 
as April 1869.  Elected a member of the U.S. National 
Academy of Sciences in 1877, he spent most of his 
professional career as a practicing scientist associated 
with the United States Coast and Geodetic Survey.  
Contrary to the four years older Newcomb, Peirce was 
convinced that space is non-Euclidean—indeed must 
be non-Euclidean—a claim he supported with both 
philosophical and observational arguments (Dipert, 
1977).  
 

In letters and manuscripts written between the years 
1891 and 1902 Peirce investigated various aspects of 
the structure of space, which led him to conclude that 
it was either of the Lobachevskian or the Riemannian 
kind.  In a paper published in The Monist of 1891 he 
discussed the question in terms of stellar parallaxes, 
although at the time without suggesting a definite an-
swer to the sign of space curvature: 
 

I think we may feel confident that the parallax of the 
furthest star lies somewhere between –0.″05 and 
+0.″15, and within another century our grandchildren 
will surely know whether the three angles of a triangle 
are greater or less than 180°, – that they are exactly that 
amount is what nobody ever can be justified in 
concluding … (Peirce, 1891: 174).  

 

Peirce had a predilection for hyperbolic space, as is 
evidenced from his manuscripts and correspondence 
with Newcomb in the early 1890s.  
 

Thus, in one of his manuscripts of 1891 he listed no 
fewer than fifteen ―… methods of investigating the 
constant of space …‖ (Peirce, 1891: 229) that includ-
ed parallax measurements, ideas of stellar evolution, 
the proper motions of stars, and Doppler shifts in stel-
lar spectra.  In addition, Peirce (2010: 230) concluded 
that ―… the relative numbers of stars of different mag-
nitudes depend on the constant of space.‖  In a lengthy 

letter to Newcomb he convinced himself—and in vain 
tried to convince Newcomb—that astronomical data 
provided support for his ―… attempt to make out a 
negative curvature of space.‖  Although realizing the 
hypothetical nature of his conclusion, he had no doubt 
of its significance: 
 

The discovery that space has a curvature would be more 
than a striking one; it would be epoch-making.  It 
would do more than anything to break up the belief in 
the immutable character of mechanical law, and would 
thus lead to a conception of the universe in which 
mechanical law should not be the head and centre of the 
whole.  It would contribute to the improving respect 
paid to American science, were this made out here … 
In my mind, this is part of a general theory of the 
universe, of which I have traced many consequences, – 
some true and others undiscovered, – and of which 
many more can be deduced; and with one striking suc-
cess, I trust there would be little difficulty in getting 
other deductions tested.  It is certain that the theory if 
true is of great moment. (Eisele, 1957: 421-422). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Charles S. Peirce, 1839 –1914 

(after: http://psychology.wikia.com/wiki/ 
Charles_Peirce).  

 

Peirce‘s optimism was short-lived, as indicated in a 
letter he wrote to Newcomb on 21 December 1891:  
 

I have for the present given up the idea that anything 
can be concluded with considerable probability con-
cerning the curvature of space. (Eisele, 1957: 423).  

 

Newcomb welcomed Peirce‘s more agnostic attitude, 
which he mistakenly took to be support of his own 
view, namely, ―… that all philosophical and logical 
discussion is useless.‖ (Eisele, 1957: 424).  This was 
definitely not a view shared by Peirce, who never did 
quite abandon the matter.  Thus, in a manuscript note 
of 1894 he wrote:  
 

I made the necessary computations for a selection of 
stars.  The result was markedly in favor of the hyper-
bolic geometry. (Dipert, 1977: 411). 

 

Peirce‘s attempt to conceive celestial space as non-
Euclidean was the most elaborate and serious one of 
the few such attempts in the nineteenth century.  How-
ever, he made no impact at all, primarily because he 
did not publish his arguments in journals read by most 

http://psychology.wikia.com/wiki/%20Charles_Peirce
http://psychology.wikia.com/wiki/%20Charles_Peirce
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astronomers and mathematicians.  Although his ideas 
were known to some American scientists, they were 
not convinced.  As Newcomb wrote him in March 
1892,  
 

… the task of getting the scientific world to accept any 
proof that space is not homoloidal [flat], is hopeless, 
and you could have no other satisfaction than that of 
doing a work for posterity … (Eisele, 1957: 424).  

 

When Newcomb died in 1909, and when Peirce died 
just five years later, observational proof of curved 
space was still lacking.  
 
7  FRENCH DISCUSSIONS  
 

References to the possible astronomical consequences 
of non-Euclidean space appeared not only in the con-
texts of astronomy, but sometimes also in the mathe-
matical and philosophical literature.  According to the 
conventionalist view of Henri Poincaré (1854–1912), 
one of the most eminent and influential scientists at the 
turn of the century, the geometry of space could not be 
determined objectively.  According to him, it made no 
sense to say that one geometry was more true than an-
other, only that it was more convenient.  For example, 
if the sum of angles in a celestial triangle were found 
by astronomical measurements to be, say, 185° ± 1°, 
one might assume the physics of light propagation to 
be correct and change to a spherical geometry; but one 
might also choose to maintain Euclidean geometry by 
changing the theory of how light propagates through 
space.  Because Poincaré (1892) found Euclidean geo-
metry to be the most simple and convenient system, he 
saw no reason to consider other candidates for the 
structure of space. 
 

Although many French scientists were influenced by 
Poincaré‘s conventionalism, not all agreed that Euclid-
ean geometry was always to be preferred because of its 
simplicity.  Auguste Calinon (1850–1900), a mathe-
matician and philosopher, argued that the different 
geometrical systems were not physically equivalent.  It 
was, he maintained, legitimate to ask about the parti-
cular geometry that is realized in the physical world.  
And yet, although he spoke of astronomical measure-
ments of celestial triangles as a ―… mode of verifica-
tion …‖ of Euclidean geometry, he may not have be-
lieved that a non-Euclidean structure of space might 
ever be revealed observationally.  Calinon said (1889: 
595; my English translation): 
 

All that can legitimately be concluded, is that the differ-
ences which might exist between Euclidean geometry 
and that realized by the universe are due to experiment-
al error.   

 

In a later paper, Calinon (1893) argued in agreement 
with Poincaré that astronomical problems might be 
approached with the kind of geometry most suited to 
produce a simple solution.  The choice of geometry 
might vary from one problem to another, he suggested, 
and even from one area of the Universe to another. 
 

A contemporary of Calinon, the mathematician Paul 
Barbarin (1855–1931), was a prolific writer on non-
Euclidean geometry.  Contrary to Poincaré, he was an 
empiricist in the sense that he believed that the geo-
metry of space was a question that could, and could 
only, be determined observationally.  This is what     
he argued in his book of 1902, La Géometrie Non-
Euclidienne, which included a chapter on what he 

called geometrical physics (Barbarin, 1902: 81-86).  
According to the French geometer, measurements of 
very small stellar parallaxes indicated that the radius of 
curvature exceeded 400,000 AU, which made him 
conclude that our part of the Universe might possibly 
be curved.  On the other hand, it might just as well be 
Euclidean, and from a practical point of view there 
was not as yet any means of distinguishing between 
the two possibilities.  Barbarin derived formulae for 
celestial triangles that could in principle distinguish 
between the three geometries associated with the 
names of Euclid, Lobachevsky and Riemann.  How-
ever, he had to admit that his formulae were of no 
practical value as they relied on angle measurements 
much more precise than 0.01″.  Yet he optimistically 
expressed his belief that the problem would be solved 
in the near future, thanks to the rapid progress in astro-
nomical observational technology. 
 

The works of French mathematicians such as Poin-
caré, Calinon and Barbarin were basically geometrical 
exercises rather than contributions to astronomy.  Tel-
lingly, they did not refer to values of stellar parallaxes 
or other astronomical data.  From an astronomical 
point of view they were barren, doing nothing to 
change the general opinion of fin-de-siècle scientists, 
such as the mathematician-philosopher Bertrand Rus-
sell (1872–1970) summarized it in a dissertation of 
1897:  
 

Though a small space-constant is regarded as em-     
pirically possible, it is not usually regarded as prob-
able; and the finite space-constants with which Meta-
geometry is equally conversant, are not usually thought 
even possible, as explanations of empirical fact. (Rus-
sell, 1897: 53). 

 

This was indeed the consensus view at the turn of 
the century, shared by the majority of astronomers and 
physicists.  In his lecture course in Vienna on natural 
philosophy in 1903-1906 Ludwig Boltzmann (1844–
1906) referred several times to the possibility of a 
positively-curved stellar Universe.  He found it fascin-
ating that in principle an answer might be obtained by 
measurements of heavenly triangles with stars at their 
vertices:  
 

The spherical non-Euclidean space is completely closed 
in itself; it is not infinite, but has some finite size.  If we 
know how large the triangles must be to correspond to a 
certain deviation from the sum of angles 180°, then we 
could also construct the size of the entire universe.  We 
would then have a space which ends nowhere and as a 
whole returns into itself. (Fasol-Boltzmann, 1990: 215; 
my English translation). 

 

He thought this was a perspective that offered ―… 
enormous logical advantages.‖ (ibid.).  But logic is one 
thing; empirical reality is another.  While in one of his 
lecture notes Boltzmann considered a closed Universe 
to be not only possible, but even probable, in a later 
note he held it to be ―… not likely, yet it is a pos-
sibility that measurements of the stars will prove space 
to be non-Euclidean.‖ (Fasol-Boltzmann, 1900: 255; 
my English translation). 
 
8  TWO GERMAN ASTRONOMERS  
 

Contrary to his French contemporaries and most other 
scientists at the turn of the century, young Karl 
Schwarzschild (1873–1916) considered curved-space 
astronomy a possibility that deserved serious attention.  
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He was a student of the distinguished Munich astron-
omer Hugo von Seeliger (1849–1924), according to 
whom non-Euclidean geometry could not possibly be 
useful in elucidating questions relating to physics, 
astronomy or cosmology.  Space, Seeliger claimed, 
was nothing but an abstract reference system and de-
void of properties of any kind.  He consequently warn-
ed against  
 

… the common and therefore very fatal misapprehen-
sion that one … [is] able to decide by measurement 
which geometry is the ‗true‘ one, or even, which space 
is the one we live in. (Seeliger, 1913: 200; my English 
translation).  

 

Schwarzschild (Figure 5) disagreed with his former 
professor.  
 

In an important lecture given on 9 August 1900 to 
the Astronomical Society in Heidelberg, Schwarz-
schild discussed from a modern perspective what 
Lobachevsky had done much earlier, namely, how to 
determine the geometry of space from observations.  
As one among other possible observational tests, he 
mentioned star counts relating the number of stars to 
their magnitudes: 
 

I have found that the number grows with magnitude 
more slowly in pseudospherical [hyperbolic] space, and 
more quickly in elliptic space, than under the same 
assumptions in Euclidean space. (Schwarzschild, 1900: 
345; my English translation).  

 

However, he focused on the classical case of parallax 
measurements.  
 

While in Euclidean space the parallax, p, of a star 
infinitely far away is zero, in hyperbolic space there 
will be a minimal non-zero parallax that decreases 
with the curvature radius, R, such as shown by Equa-
tion (2).  Let the radius of the orbit of the Earth be r, 
then p ≥ r/R, as shown already by Lobachevsky in 
1829.  Thus, a measurement of the smallest known 
parallax imposes a lower limit on R.  Schwarzschild 
estimated pmin  0.005″, from which he concluded that 
R > 4 × 106 AU.  The bound, corresponding to about 
20 parsecs or 60 light years, was an order of magni-
tude higher than the one estimated by Lobachevsky.  
Schwarzschild commented:  
 

Thus the curvature of the hyperbolic space is so insig-
nificant that it cannot be observed by measurements in 
the planetary system, and because hyperbolic space is 
infinite, like Euclidean space, no unusual appearances 
will be observed on looking at the system of fixed stars. 
(Schwarzschild, 1900: 342; cf. Schemmel, 2005). 

 

With regard to positively-curved space, Schwarz-
schild argued that the spherical case would lead to 
physically-unacceptable consequences, and for this 
reason he discussed only the elliptic possibility.  In this 
case there are no infinite distances, and every parallax, 
including p = 0, corresponds to a finite distance.  The 
relevant formula replacing p ≥ r/R is 

  
cot

d

R
 p

R

r
              (4) 

where R is real and d is the distance from the object 
(star) to the observer along a geodesic.  Contrary to the 
hyperbolic case, ―… it is a mistake to believe that a 
limit for R can be found simply from measurements of 
the parallax of fixed stars.‖ (Schwarzschild, 1900: 342; 
my English translation).  Therefore, physical consider-
ations were needed to determine the minimal value of 

R.  Based upon star catalogues, he argued that all stars 
having a parallax smaller than 0.1″ were located within 
a finite volume, and from this, and by assuming a uni-
form distribution of the stars, he reached the conclus-
ion that R  1.6 × 108 AU  2500 light years.  
 

Schwarzschild further pointed out that in elliptic 
space a ray of light will return to its starting point after 
having traversed the world.  We should therefore ex-
pect to see an antipodal image of the Sun, a ‗counter-
Sun‘, identical to our ordinary image of it but in the 
opposite direction.  Of course, no such second image 
of the Sun is observed, a problem that Schwarzschild 
solved, or explained away, by assuming a suitable ab-
sorption of light in interstellar space.  He summarized 
his results as follows:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Karl Schwarzschild, 1873–1916 (after Runge, 1916: 

545). 
 

One may, without coming into contradiction with ex-
perience, conceive the world to be contained in a hyper-
bolic (pseudo-spherical) space with a radius of curva-
ture greater than 4 000 000 earth radii, or in a finite 
elliptic space with a radius of curvature greater than 
100 000 000 earth radii, where, in the last case, one 
assumes an absorption of light circumnavigating the 
world corresponding to 40 magnitudes. (Schwarzschild, 
1900: 345; my English translation). 

 

He saw no way to go further than this rather indefinite 
conclusion and decide observationally whether space 
really has a negative or positive curvature, or whether 
it really is finite or infinite.  Nonetheless, from a philo-
sophical point of view he preferred a closed Universe.  
It would, he said, be ―… satisfying to reason …‖ if we 
could conceive of   
 

… space itself as being closed and finite, and filled, 
more or less completely, by this stellar system.  If this 
were the case, then a time will come when space will 
have been investigated like the surface of the earth, 
where macroscopic investigations are complete and only 
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the microscopic ones need continue.  A major part of 
the interest for me in the hypothesis of an elliptic space 
derives from this far reaching view. (Schwarzschild, 
1900: 342; my English translation).  

 

In his systematic discussion of a curved cosmic space 
there was one assumption that he, contrary to Zöllner 
nearly thirty years earlier, failed to mention, namely, 
that the Universe had existed for an eternity of time.  
But this was an assumption rarely questioned or even 
mentioned at the time, and one that also went unquest-
ioned in the early relativistic models of the Universe.  
 

While Schwarzschild‘s paper of 1900 is well known, 
an interesting paper by Paul Harzer (1857–1932) eight 
years later has rarely if ever received mention in the 
literature on history of astronomy.  The reason may be 
that it was published in a mathematical and not an 
astronomical journal.  It deserves to be better known, 
for Harzer, a Professor of Astronomy at the University 
of Kiel, went further than Schwarzschild‘s investiga-
tion by extending it to the distribution of stars.  Start-
ing in 1898, Seeliger had developed a model of our 
Galaxy by means of an elaborate mathematical analy-
sis of star counts and stellar magnitudes (Paul, 1993).  
While Seeliger based his ‗statistical cosmology‘ on the 
unstated assumption of Euclidean space, in a lecture of 
1908 Harzer transformed the calculations to a space of 
constant positive curvature.  In this way he arrived at a 
modified picture of our Galaxy.  
 

Harzer‘s stellar Universe was enclosed in a finite 
cosmic space with a volume about seventeen times that 
of the stellar system.  As to this stellar system, it con-
tained the same number of stars but was compressed to 
a size approximately one half of what it had in See-
liger‘s infinite Euclidean space.  The size of the entire 
Universe was given by the time it took for a ray of 
light to circumnavigate it, which Harzer estimated to 
be 8,700 years.  During its travel round the world the 
light would became dimmer because of absorption, 
and by taking into account the motion of the Solar 
System he arrived at a loss in light intensity corre-
sponding to thirteen magnitudes.  This was a more rea-
listic value than Schwarschild‘s forty magnitudes, yet  
it was sufficient to make the problem of the counter-   
Sun go away.  
 

Harzer took the model of a closed stellar Universe 
no less seriously than Schwarzschild, but of course he 
realized that it was hypothetical and lacked the support 
of solid observational evidence.  Consequently, his 
conclusion was cautious:  
 

This picture includes no features that can be character-
ized as improbable … But the picture speaks of the 
possibility of the finite space only, not of its reality, and 
as yet we have no evidence for this reality. (Harzer, 
1908: 266; his italics; my English translation).  

 

The Schwarzschild-Harzer suggestion of a closed 
space filled with stars had the conceptual advantage 
that it did away with the infinite empty space, but it 
made almost no impact on mainstream astronomy.  
The cosmological problem that moved to the forefront 
of astronomy in the 1910s was concerned with the size 
of our Galaxy and the question of whether the spiral 
nebulae were external objects or belonged to our 
Galaxy.  This was a problem in which the geometry of 
space was considered irrelevant.  When it was finally 
solved in the mid-1920s it was by observational 
means, namely, Edwin Hubble‘s (1889–1953) famous 

discovery of Cepheid variables in the Andromeda 
Nebula (Hubble, 1925; cf. Berendzen, Hart, and See-
ley, 1984). 
 

9  CONCLUSION 
 

Whereas non-Euclidean geometry flourished as a 
mathematical research field in the last half of the 
nineteenth century, its connection to the real space 
inhabited by physical objects was much less cultivated.  
The large majority of mathematicians did not care 
whether real space was Euclidean or not; and those 
who did care only dealt with the subject in a general 
and often casual way, and avoided dealing seriously 
with the possibility of determining a space curvature 
different from zero.  After all, that was supposed to be 
the business of the astronomers.  While some mathe-
maticians, following Poincaré, declared the problem 
meaningless, others admitted that in principle space 
might be curved—but in principle only—and left it at 
that.  
 

Most astronomers were well aware of the possibility 
of space being non-Euclidean, but it was considered a 
remote possibility and not one that would keep them 
awake at night.  Astronomy and cosmology books in 
the early twentieth century usually presented the mat-
erial world as consisting of a huge conglomerate of 
stars, essentially our Galaxy, floating in the infinite 
Euclidean space.  What might be beyond the stellar 
system was left to speculation.  It might be empty 
space or some ethereal medium, in any case it was 
regarded as irrelevant from an astronomical point of 
view.  As the historian and astronomy author Agnes 
Mary Clerke (1842–1907) expressed it, ―With the pos-
sibilities beyond, science has no concern… ‖ (Clerke, 
1890: 368). 
 

Astronomers had their own reasons, different from 
those of the mathematicians, to ignore non-Euclidean 
geometry.  Lack of awareness of the new forms of 
geometry or lack of mathematical competence were 
not generally among the reasons as many astronomers 
had strong backgrounds in mathematics and were con-
versant with the technicalities of non-Euclidean geo-
metry.  But while the motion and properties of celestial 
bodies were definitely the business of the astronomers, 
the space in which the bodies move was not seen as 
belonging to the domain of astronomy.  It was a kind 
of ‗nothingness‘ that philosophers could speak of, and 
did speak of.  Newcomb (1898: 5) probably spoke for 
the majority of his colleagues when he warned against 
―… the tendency among both geometers and psycho-
ogists to talk of space as an entity in itself.‖  To arouse 
interest in the astronomical community, theories of 
non-Euclidean space would have to be observationally 
testable or offer opportunities for solving problems of 
astronomical relevance.  They scored badly on both 
counts. 
 

Even though non-Euclidean geometry was thought 
to have little or no explanatory force, there was the 
possibility that it could be verified by measurements.  
While it could never be proved that space was Euclid-
ean, it could conceivably be proved that it was not.  As 
we have seen, a few astronomers and other scientists—
such as Ball, Newcomb, Peirce, Barbarin and Schwarz-
schild—did take an interest in this line of reasoning, 
going back to Lobachevsky.  However, while in the 
early years of the twentieth century it was realized that 
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the curvature of space was indeed measurable, it was 
also realized that the kind of upper bound for the curv-
ature that measurements allowed was ineffective to 
distinguish curved from flat space.  Under these cir-
cumstances, it is no wonder that astronomers saw no 
reason to abandon the intuitively pleasing Euclidean 
space that had served their science so well in the past.  
Even should space be curved, the curvature radius 
would be so large that for all practical purposes it was 
infinite, that is, space could be considered Euclidean.  
So why bother?  It seems that the main reason for the 
astronomers‘ reluctance to consider the consequences 
of space being non-Euclidean was just this: they had 
no need for the hypothesis.  
 

10  EINSTEINIAN POSTSCRIPT 
 

Although this review is limited to the pre-relativity era 
it would not be out of place to recall that the question 
of curved space entered a wholly new phase with Al-
bert Einstein‘s (1879–1955) General Theory of Rela-
tivity.  The observational evidence for curved space 
that was still missing at the time of Schwarzschild and 
Harzer first turned up in 1919 with the detection of the 
bending of starlight in the famous Eddington-Dyson 
solar eclipse expedition.  Of course, this was a local 
curvature of space caused by the Sun‘s gravitational 
field and not a proof that global space is positively 
curved.  Einstein‘s General Theory of Relativity revo-
lutionized cosmology, but it did not and cannot pro-
vide an answer to the old question of whether cosmic 
space is closed or not, or finite or not.  The present 
consensus view is that we live in a flat infinite space, 
yet (as Lobachevsky was already aware of) this is a 
view that can never be proved observationally.  An-
other question that turned up in physical theory in the 
1920s was the number of space dimensions, although 
this question was more discussed in the context of 
microphysics than in a cosmological context (Wünsch, 
2010).  
 

In early 1921 Einstein gave a brilliant address to the 
Prussian Academy of Sciences in which he reflected 
on the relationship between mathematics and the phys-
ical sciences (Einstein, 1982: 233).  He famously stat-
ed that ―… as far as the propositions of mathematics 
refer to reality, they are not certain; and as far as they 
are certain, they do not refer to reality.‖  Einstein dis-
tinguished between what he called ‗practical geo-
metry‘ and ‗purely axiomatic geometry‘, arguing that 
while the first version was a natural science, the sec-
ond was not, and  
 

The question whether the universe is spatially finite or 
not seems to me an entirely meaningful question in the 
sense of practical geometry.  I do not even consider it 
impossible that the question will be answered before 
long by astronomy. (Einstein, 1982: 239). 

 

Indeed, without this view of geometry, he continued, 
―I should have been unable to formulate the theory of 
[general] relativity.‖ (Einstein, 1982: 235). 
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