
Journal of Astronomical History and Heritage, 18(2), 116–122 (2015). 

 

  
Page 116 

 
  

A BRIEF HISTORY OF ERROR 
 

Alan H. Batten 
2594 Sinclair Rd, Victoria, B.C., Canada, V8N 1B9. 

E-mail: ahbatten@telus.net 
 

Abstract: Observational errors are inevitable in astronomy, and statements of results are not complete without some 

estimate of the uncertainties involved.  While we always strive to reduce those uncertainties, we know that some will 
remain.  There have been times in the history of science when errors have masked second-order effects and actually 
assisted in the process of scientific discovery. 
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1  INTRODUCTION   
 

We are all familiar with observational errors in 
astronomy, and experimental errors in the 
laboratory sciences.  We know that we cannot 
eliminate them entirely: Heisenberg‘s uncertain-
ty principle assures us of that, and in practice 
the errors are much larger than that principle 
would predict.  Obviously, we strive to reduce 
errors as far as possible but, at the end of an 
investigation, we try to estimate the uncertainty 
that those errors will inevitably produce in the 
final result.  Indeed, a result without some in-
dication of its uncertainty is now considered 
incomplete, but this was not always so in the 
history of science. 
 

Observational errors can be of two kinds: 
systematic and accidental. Both occur in astron-
omy.  The story of the unfortunate assistant of 
the then Astronomer Royal, Nevil Maskelyne 
(1732–1811; Figure 1) is  well known.  The poor  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: A portrait of the Reverend Nevil Maskelyne by Edward 
Scriven in 1836 (en.wikipedia.org). 

man was dismissed because his observations of 
the transits of stars were consistently about half 
a second ‗late‘.  Had the customs of the times 
permitted, the assistant could justifiably have 
retorted that Maskelyne‘s determinations were 
half a second early!  Thus, the concept of per-
sonal error came eventually to be recognized.  It 
is still with us. In the large cooperative program-
mes that used to be undertaken at the Dominion 
Astrophysical Observatory in Victoria, B.C., and 
which involved several people in the measure-
ment of spectrograms, care was always taken 
that some of the spectrograms were measured 
by everyone concerned so that personal errors 
could be checked and evaluated.  
 

While it is important to be aware of the exist-
ence of personal and other forms of systematic 
error, my chief concern in this paper will be with 
accidental errors.  I will consider the work of 
Aristarchus of Samos, Tycho Brahe and Kepler, 
and Robert Boyle, and then go on to discuss 
some modern work in astronomy in which the 
evaluation of error is important. 
 

2  ARISTARCHUS OF SAMOS  
 

It is well known that Aristarchus (circa 310–230 
BCE) devised a method for determining the 
relative sizes and distances of the Sun and the 
Moon and that by combining this with observa-
tions made during a total lunar eclipse he could, 
in principle, derive the absolute distances of the 
two bodies.  The still extant text has been trans-
lated and annotated by Heath (1913). 
 

Aristarchus‘ method was perfectly sound in 
principle, and his treatment of the geometry of 
lunar eclipses was superb.  In practice, how-
ever, the method was flawed because it de-
pended on assessing when the Moon was ex-
acty half full.  This is difficult to do; Neugebauer, 
as quoted by Mickelson (2007), claimed that it is 
difficult to determine the time of quadrature to 
within a day or two.  My own attempts suggest 
one can do considerably better than that, but the 
ratio of the distances of Sun and Moon from the 
Earth is so sensitive that even an error of an 
hour or two can make a great difference to the 
derived result.  When the Moon is exactly at 
quadrature,  then  the  angle  Sun-Moon-Earth 

mailto:ahbatten@telus.net
https://upload.wikimedia.org/wikipedia/commons/5/59/Maskelyne_Nevil.jpg


Alan H. Batten                                                                                                                                                      A Brief History of Error 

 

  
Page 117 

 
  

(SME) is 90° and the angle Moon-Earth-Sun 
(MES) can be measured, at least in principle.  
The ratio of the distance of the Sun to that of the 
Moon is the secant of MES.  Unfortunately, 
since MES is also nearly 90°, the secant is large 
and varies rapidly as the angle changes, and 
the angle itself is difficult to measure.  This 
misled Aristarchus into grossly underestimating 
the ratio of the two distances, an example of 
how an apparently small observational error can 
have very large effects.  He found that the Sun 
was between 18 and 20 times as far away as 
the Moon.  At first sight, this might seem like an 
attempt, however inadequate, to estimate the 
errors of observation.  Aristarchus, however, 
assumed that the angle MES was exactly 87°, 
presumably on the basis of an attempted meas-
urement, and the range of values he gives for 
the ratio of the distances of the Sun and Moon 
arises solely from approximations he was forced 
to make to the ratio of two lengths in his geo-
metrical construction.  He was clearly a superb 
geometer, and must have been well aware how 
sensitive his result was to any errors of obser-
vation, yet he assumed that his determination of 
the angle MES was correct.  For all that, Arist-
archus‘ result was a great advance on Anaxag-
oras‘ (circa 500–428 BCE) conclusion that the 
Sun was a fiery stone that was bigger than the 
Pelopennesos, still more on a culture that could 
believe that the Sun was close enough to scorch 
the Earth when the apprentice charioteer, Phae-
ton, took over the reins from the Sun-god He-
lios! 

 
3  TYCHO BRAHE AND KEPLER 
 

Before Tycho Brahe (1546–1601; Figure 2), the 
positions of planets were not measured system-
atically and the possibility that there might be 
errors in the measurements that were made was 
not taken into account.  As is well known, Tycho 
took great care not only over the observations 
themselves but in the preparation of the 
graduated circles with which the observations 
were to be made.  He achieved a precision of 
about two arcminutes in planetary measures (he 
could do better on stars—see Thoren, 1990), as 
did Ulugh Beg (1394–1449) before him, and Jai 
Singh (1688–1743) shortly after him.  This is just 
about the limit of what can be achieved obser-
vationally without the aid of the telescope.  The 
fund of data that Tycho obtained enabled his 
assistant and successor, Johannes Kepler 
(1571–1630; Figure 3) to demonstrate, after 
many false starts, that the orbits of the planets 
were elliptical.  We know that Kepler rejected 
one false start because the orbit he obtained for 
Mars deviated systematically in one part by 8 
arcminutes from Tycho‘s observations.  Kepler 
knew that Tycho would not have made so great 
an error.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: A portrait of Tycho Brahe by Eduard Ender 
(en.wikipedia.org). 

 
What might have happened if Tycho‘s obser-

vations had been more precise?  Suppose that 
he had been able to detect the deviations from 
simple ellipses caused by the mutual perturba-
tions of the planets.  Kepler, of course, was 
working before Newton and did not know that 
the inverse-square law of gravity would explain 
the three laws of planetary motion that he had 
discovered.  Still less did he understand the 
possibility of the planets perturbing each other.  
Would he have been content to accept ellipti- 
cal orbits as a first approximation with some un- 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Johannes Kepler (thescienceclassroom.Wiki 
spaces.com). 

https://upload.wikimedia.org/wikipedia/commons/2/2b/Tycho_Brahe.JPG
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known force causing deviations from the ellipse, 
or would he have insisted on finding the ‗true‘ 
orbit that would satisfy these supposed ex-
tremely precise observations obtained by 
Tycho?  One suggestion (Kurth, 1959: 42–43) is 
that he might have arrived at a model for the 
Solar System rather like the early quantum 
theory of the atom.  Kurth supposed that Kepler 
would have regarded the mean orbital motions 
of the planets as fundamental and, since his 
Third Law related these to the mean distances 
of the planets, which had only discrete values, 
he might have concluded that only discrete 
values of the mean motions were permitted in 
the Solar System. The satellite system of Jupiter 
and the later-discovered one of Saturn might 
seem to confirm this notion.  Kurth argued that a 
completely consistent theory of the planetary 
motions could be constructed along  these  lines   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: The Honorable Robert Boyle (http://wellcome 
images.org/). 

 
and  remarked that, had Kepler proceeded in 
this manner, ―… physical science and philoso-
phy would have developed in a completely 
different way.‖ (ibid.).  Whether or not one finds 
Kurth‘s argument convincing, it does draw 
attention to the fact that the limited precision of 
Tycho‘s observations is what enabled Kepler to 
derive elliptical orbits, which, in turn, enabled 
Newton to show that the one law of gravity 
would explain the falling of a stone to Earth and 
the motions of the Moon and planets. 

 
4  ROBERT BOYLE 
 

I learned in my schooldays that Robert Boyle 
(1627–1691; Figure 4) was the uncle of the Earl 
of Cork and the Father of Chemistry.  He was 

not an astronomer, but his most famous dis-
covery, that of the relation between the pressure 
and volume of a given mass of gas, combined 
with the later inclusion of temperature in the 
relationship, has proved to be of the utmost 
importance in the study of stellar structure and 
evolution and certainly deserves a place in the 
history of astronomy. 
 

Boyle‘s law, of course, is that for a given 
mass of gas at a constant temperature, the 
pressure, P, and the volume, V, obey the re-
lation 
 

PV = constant            (1) 
 

Boyle was well aware that his values of the 
product PV were not exactly constant and he 
wrote: 
 

Now although we deny not, but that in our 
table some particulars do not so exactly an-
swer to what our formerly mentioned hypoth-
esis might perchance invite the reader to 
expect; yet the variations are not so consid-
erable, but that they may probably enough be 
ascribed to some such want of exactness as in 
such nice experiments is scarce avoidable. 
(Boyle, 1662: 159).    

 

Here is a clear recognition that the results have 
been affected by experimental errors, a recog-
nition that is repeated a few pages further on 
(Boyle, 1662: 162) together with a suggestion as 
to the cause of the error: 
 

In the meantime (to return to our last-
mentioned experiments) besides that so little 
variation may be in great part imputed to the 
difficulty of making experiments of this nature 
exactly, and perhaps a good part of it to some-
thing of inequality in the cavity of the pipe, or 
even in the thickness of the glass … 

 

This appears be one of the earliest discus-
sions of experimental or observational errors in 
the literature of science.  Once again, we are 
prompted to ask: what if Boyle had been able to 
make his apparatus more uniform and thus to 
reduce his experimental errors?  If he had 
reduced  those  errors  to  a  small  enough  value, 
then he would have become aware of real de-
partures from the simple form of his law.  It is 
doubtful, however, if, at that time, the van der 
Waals corrections could have been derived, or 
even formulated, and the insight given by the 
ideal form of the law might have been lost to 
science until well into the nineteenth century.   
 

The lesson from both Kepler‘s work and 
Boyle‘s is that observational or experimental 
errors can be helpful in masking second-order 
effects and thus enabling scientists to concen-
trate their attention on the major factors at work 
in a given situation until they can develop the 
analytical tools needed to deal with the minor 
factors.  Interestingly, a similar point was made 
by Airy (1850: 102) in an address to which I shall 
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have occasion to refer later: 
 

In  this,  as  in  all other cases in natural philoso-
phy, the more the accuracy of observations is 
increased, the greater becomes the complex-
ity of the laws of nature which it is necessary 
to take into account; and the investigation, 
which at first was intended only for the pur-
pose of correcting the numerical coefficients of 
a known theory, may lead to the discovery or 
verification of a subordinate theory of a totally 
different kind. 

 
5  GAUSS 
 

After Maskelyne‘s encounter with personal 
errors, the next step towards full recognition of 
the importance of observational errors came in 
the nineteenth century and, again, astronomers 
led the way.  The discovery of the first minor 
planets early in that century created a need for a 
means of determining at least a preliminary orbit 
from a few observations in order that a newly-
discovered planet might be recovered after its 
conjunction with the Sun.  As is well known, Carl 
Friedrich Gauss (1777–1855; Figure 5) provided 
the answer (Gauss, 1809).  Since six orbital ele-
ments have to be determined (the period, P, the 
major semi-axis, a, the orbital eccentricity, e, the 
inclination of the plane of the orbit to that of the 
sky, i, the longitude of periastron, ω, and the 
longitude of the ascending node, Ω), three ob-
servations, each giving a position and a time are 
just sufficient.  Of course, if one proceeds with 
only three observations it is implicitly assumed 
that those observations are exact and the de-
rived orbit may well be only an approximation to 
the true one—but a close enough approximation 
to serve the purpose of recovering the planet as 
it emerges from the glare of the Sun.  Once 
sufficient observations have been obtained, then 
a more accurate orbit can be determined, but 
the orbital elements become over-determined 
and the question arises: what are their most 
accurate values given the inevitable errors of 
observation?  Obviously, at best, only a few of 
the observations will lie exactly on the derived 
orbit.  
 

Gauss provided the solution to this problem 
by showing that the best orbit was the one 
which made the sum of the squares of the 
residuals of the observations from the computed 
orbit a minimum.  This applied to all problems in 
which it was required to find the best set of 
values of several variables to satisfy a given set 
of observations.  In the special case of one 
variable, Gauss‘s solution reduced to the intui-
tively-obvious one of taking the arithmetic mean.  
Of course, he assumed a particular kind of dis-
tribution of the observational errors: the ‗normal‘, 
or as we often say nowadays, the ‗Gaussian‘ 
distribution—a point to which we shall return 
later.  It became fashionable to supplement any 

numerical value with an estimate of its ‗probable 
error‘ or ‗mean error‘.  The quantity sought was 
equally likely to lie within the range of the prob-
able error as outside it, while it was twice as 
likely to lie within the range of the mean error as 
outside it.  I remember Erwin Finlay-Freundlich 
(1885–1964) once joking that British astrono-
mers were more optimistic than their German 
colleagues, since the British quoted probable 
errors while the Germans quoted mean errors! 
In fact, the divide seems to be one of time rather 
than nationality.  In the mid-nineteenth century, 
German astronomers often quoted probable 
errors, but perhaps they changed to mean errors 
more quickly than their British colleagues. Which-
ever value is preferred, it has precise meaning 
only if the observational errors do, in fact, follow 
a normal distribution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: A portrait of Carl Friedrich Gauss by C.A. 
Jensen in 1840 (en.wikipedia.org). 

 
6  STELLAR PARALLAX  
 

After Gauss had solved the problem of deter-
mining the orbits of the newly-discovered minor 
planets, the next major problem was the deter-
mination of stellar parallaxes.  James Bradley 
(1693–1762) had given astronomers a pretty 
good idea of the size of the quantity they were 
looking for (about one arcsecond) and a number 
of claimed determinations were made in the 
subsequent years, although they failed to carry 
conviction.   
 

As is well known, three astronomers suc-
ceeded in the period 1837–1840, namely F.W. 
Bessel (1784–1846; Figure 6), F.G.W. Struve 
(1793–1864;  Figure  7)  and  T.J.  Henderson 
(1798–1844).  By that time, astronomers had 
had an opportunity to absorb Gauss‘s lessons 
on the theory of errors and all three of these 
men quoted probable errors for the paral-    
laxes that  they derived for  61 Cygni, Vega, and 
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Figure 6: A portrait of Friedrich Wilhelm Bessel by C.A. 
Jensen in 1839 (en.wikipedia.org). 

 
α Centauri, respectively (see my discussion in 
Batten, 1988; 120–124).  Some years ago, in 
conversation, Albert van Helden suggested to 
me that it was precisely because these three 
quoted probable errors that their determinations 
were accepted as convincing by their contemp-
oraries.   

 

An interesting commentary on that thought is 
the history of Struve‘s determination of the par- 
allax  of  Vega.   He  published an initial  value of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: A portrait of Friedrich Georg Wilhelm Struve by 
C.A. Jensen (comons.wikimedia.org). 

0.125 ± 0.055″ (Struve, 1837).  Had this been 
accepted, it would have been the first successful 
determination of the parallax of a fixed star, but 
Struve himself regarded the probable error as 
too large.  Shortly afterwards, Bessel (1838) 
published his parallax for the two components of 
61 Cygni, giving the value of 0.3136 ± 0.0141″, 
and in the opinion of most of us became entitled 
to claim the priority to which Struve had come 
so close.  Struve (1840) soon followed with a 
revised  parallax  for  Vega  of  0.2613  ±  0.0254″.  
He had much reduced the uncertainty of his 
result but, ironically, his first value for the 
parallax of Vega was considerably closer to the 
modern value (0.133″) than was his revised 
value.  Perhaps we should be more aware that 
our estimates of uncertainty are themselves un-
certain! 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Otto Wilhelm Struve in 1879 (commons.wikimedia. 
org). 

 
7  PRECESSION 
 

One of the fundamental constants of celestial 
mechanics is  the rate of  precession of the equi-
noxes  and  Wilhelm  Struve‘s  astronomer son,  
Otto Wilhem Struve (1819–1905; Figure 8) won 
the Gold Medal of the Royal Astronomical 
Society in 1850 for his determination of the 
constant of precession and the solar motion with 
respect to nearby stars.  The two quantities are 
linked observationally and are difficult to sep-
arate. G.B. Airy (1801–1892; Figure 9) was at 
that time the President of the Royal Astronomi- 
cal Society, so it fell to him to deliver the cust-
omary address explaining the work that was so 
honoured and giving the reasons for awarding 
the medal.  I have already quoted from this 
speech; in it Airy (1850: 108) singled out for 
special mention Otto Wilhem Struve‘s treatment 
of the uncertainties of his determinations: 

https://upload.wikimedia.org/wikipedia/commons/9/94/PSM_V17_D156_Otto_Wilhelm_Struve.jpg
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The two investigations which relate to the 
determination of the direction and magnitude 
of the solar movement are, in my opinion, very 
admirable; but the third, which exhibits the 
amount of uncertainty in the result depending 
on venial or probable errors of observation, is, 
in my judgment, even more valuable. 

 

Modern astronomers undertaking a similar 
determination of these quantities would regard a 
discussion of the uncertainties as an essential 
part of the paper, but Airy‘s wording suggests 
that in 1850 such a discussion was still unusual.  
The derivation of the solar motion from the 
observations is  so linked to that  of  precession 
that small observational errors, such as Airy 
thought could not be ruled out, can have a large 
effect on the final result for the apex of solar 
motion, as Otto Wilhem Struve himself pointed 
out.   Just  as with Aristarchus‘  method, the final 
result is very sensitive to the errors of obser-
vation.  

 
8  DISCUSSION AND CONCLUDING 
    REMARKS 
 

Probable errors or mean errors are reliable 
guides to the actual uncertainties of derived 
quantities only if the residuals do indeed con-
form to a Gaussian distribution.  I would like to 
discuss this in the context of the area of astron- 
omy that I know best: the determination of 
orbital elements of spectroscopic binaries.  
Between 1970 and 1990 I obtained 52 spectro-
grams of the primary component of the wide 
visual binary 70 Ophiuchi, at a dispersion of      
4 mm nm

–1
 (or 2.5 Ǻ mm

–1
 in the older conven-

tion).  I have excluded from consideration a 
number of spectrograms obtained at a lower 
dispersion, but included  two  values  determined 
with a radial-velocity scanner.  Figure 10 shows 
a histogram of the residuals from the velocity-
curve eventually calculated from the orbital ele-
ments determined from these observations (Bat-
ten and Fletcher, 1991). The distribution approx-
imates to a Gaussian one, but it is not clear that 
it is one.  There is an asymmetry to the side of 
negative residuals and an apparent minimum 
just at the zero of the abscissae, where the 
maximum ought to be.  These features are prob- 
ably only statistical deviations inevitable when 
dealing with relatively small numbers of obser-
vations.  I feel fairly confident that had I obtained 
two to four times the number of observations, 
the histogram would become much closer to a 
Gaussian distribution, but the point of this dis-
cussion is that observers often determine the 
orbital elements of a spectroscopic binary from 
many fewer observations than I have used for 
70 Ophiuchi, and, even with over fifty observa-
tions, we still cannot be sure that the actual 
distribution of the residuals is Gaussian.  The 
late D.M. Popper (1913–1999) many times com- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 9: An undated print of Sir George Biddell Airy 
(commonswikipedia.org). 

 
 

mented that the true uncertainties of orbital ele-
ments were often appreciably greater than the 
published mean errors.  This is probably true of 
many other areas of astronomy, and indeed of 
other sciences.  Caution is necessary in dealing 
with all empirical results! 
 

Another point of interest in the histogram is 
the outlying observation that shows a residual of 
+0.91  kms

–1
.   The  next  largest  residual  is  no  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 10: Numbers of residuals from the computed orbit of 
70 Oph A. Each bar has a width of 0.1 kms

–1
 and the 

residuals run from –0.55 kms
–1

 to +0.46 kms
–1

, plus an 
outlier (see text) at +0.91 kms

–1
. The bar that contains 8 

residuals is centred on 0.0 kms
–1

. 
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more than –0.55 kms
–1

 and none of the others 
exceeds ±0.5 kms

–1
.  We all have it drilled into 

us early in our scientific education that a discor-
dant observation should not be discarded just 
because it is discordant.  I can assure readers 
that the observation was included in the solu-
tion!  It is legitimate, however, to examine a dis-
cordant observation to see if there is some 
reason for the large residual that might permit 
one to reject the observation.  In the present 
case, the spectrogram is one of the best in the 
whole series.  The internal (line-to-line) scatter 
of the plate is one of the smallest and the spec-
trograph seems to have been in perfect focus.  
The observation has to be accepted, even 
though it has a residual at least twice nearly all 
the others in the series.  In the all-too-few years 
that I knew R.M. Petrie (1906–1966) before his 
untimely death, he more than once told me that 
he had often found that one of the best observa-
tions of a spectroscopic binary stood off the 
computed velocity curve by more than any of the 
others.  Here is an aspect of observational error 
that has been neglected and deserves further 
investigation.  Who knows to what it might lead?   

 

Of course, there are many situations in which 
we know that the distribution of residuals will 
depart from a Gaussian one, and methods of 
estimating the uncertainties of derived quantities 
in these situations have been devised, although 
it is beyond my competence to discuss them in 
detail. In the context of determining orbital ele-
ments, however, the least-squares criterion has 
become so entrenched that I doubt if it will be 
forsaken in the foreseeable future.   

 

This  discussion  has  led  to  the  conclusion 
that not only is error inevitable in our search for 
the truth, but that it may even play a positive 
role in helping us to reach that goal.  Perhaps 
this is one of the most important lessons that we 
scientists can teach to others. 
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