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1  INTRODUCTION 
 

Petrus Apianus’ Astronomicum Caesareum con-
tains a large set of complicated and ingenious 
volvelles that can be used to compute the long-
itudes of the planets, the Sun and the Moon, as 
well as the latitudes of the planets and the 
Moon.  Besides there are volvelles for finding 
different astrological quantities and for determin-
ing the date of religious seasons like the Easter 
and Passover.  In an earlier paper (Gislén, 2016) 
I studied the working and construction one of 
Apianus’ lunar eclipse volvelles and also pro-
vided some biographical data on him. 
 

In this paper I will study the volvelles used for 
computing the planetary latitudes in Astronom-
icum Caesareum.  I will study one superior 
planet, Mars, and the two inferior planets, Venus 
and Mercury.  Apianus used the theory of plan-
etary latitudes as implemented in the Almagest 

(Toomer, 1984).  The Ptolemaic theory of the 
planetary latitudes is very complicated, and be-
low I give a much condensed description of it; 
further details can be found in Neugebauer 
(1975), Pedersen (1974: 355), and Swerdlow 
(2005). 
 
2  DESCRIPTION OF THE VOLVELLES 
 

In order to use the latitude volvelles you need 

two input parameters: the longitude  of the epi-
cycle centre, counted from the top of the def-

erent (see below), and the anomaly angle .  
The Mars volvelle (Figure 1) has a rim with two 
sets of graduations, the inner rim being gradu-
ated counter-clockwise 0˚ to 180˚ from the top 
left to the top right, then going back clockwise 
from 180˚ to the left top 360˚.  This is the entry 
of the longitude of the centre.  Radially you set 
the anomaly angle starting at the periphery of 
the central disk at 0˚ and reaching the rim at 
180˚, then returning back to the central disk at 
360˚. This scale is displayed in the wedge-formed 
area at the top of the volvelle.  There is a thread 
going from the centre of the volvelle with a small 
bead that can slide along the thread.  
 

The working is as follows.  First you use the 
anomaly scale to set the position of the bead on 
the thread.  Then the tread with the bead is set 

against the longitude of the centre on the rim 
and then the latitude is read off from the line 
found below the bead, if necessary interpolating 
between two adjacent lines.  The red area of the 
volvelle signifies northern, positive (septentrion-
alis) latitudes while the green area signifies south-
ern, negative (meridionalis) latitudes.  For the 
Venus and Jupiter volvelles the colours are re-
versed. 
 

The Saturn and Jupiter volvelles are very sim-
ilar but the rim graduation is displaced taking 
into account that the ascending node of Saturn 
is assumed to have an ecliptic longitude of 50˚ 
and that of Jupiter of –20˚.  These values are 
the same as those used in the Almagest and the 
Toledan Tables. 
 

The Venus volvelle (Figure 2) has an outer 
longitude rim graduated counter-clockwise from 
0˚ to 360˚ and is to be used for anomalies from 
0˚to 180˚.  The inner rim is graduated clockwise 
from 0˚ to 360˚ from the bottom of the volvelle 
and is to be used for anomalies from 180˚ to 
360˚. 
 

The Mercury volvelle (Figure 3) is divided in-
to two sections, a left part and a right part.  The 
left rim is graduated counter-clockwise from 0˚ 
to 360˚ with the zodiacal signs written with Latin 
numbers and is to be used for anomalies from 
0˚to 180˚.  The right rim is graduated clockwise 
from 0˚ to 360˚ with Arabic numbers and is to be 
used for anomalies from 180˚to 360˚. 

 
3  THEORY 
 

The planetary latitude in the Ptolemaic scheme 
used by Apianus is calculated using two input 
variables, the longitude of centre counted from 
the top of the deferent circle and the anomaly.  
Ptolemy then uses these variables as entries in 
a set of tables with two columns for each planet 
(Toomer, 1984: 632).  Identical tables can be 
found for instance in Al-Battani (Nallino, 
1903(II): 140) and several versions of the 
Alfonsine Tables.  The Handy Tables (Halma, 
1822–1825), the Toledan Tables (Pedersen, 
2002:1309) and Al-Khwarizmi (Suter, 1914:139) 
use a different scheme. 
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3.1  Superior Planets 
 

The superior planets have a deferent circle that 
is inclined by a fixed angle relative to the ecliptic 
plane (see Figure 4).  The nodes are located at 
the crossings between the deferent circle plane 
and the ecliptic plane.  The epicycle in turn is 
deviated from the deferent plane by an angle 
relative to a line in the deferent plane from the 
deferent centre to the epicycle centre.  This dev-
iation is maximum when the epicycle centre is at 
the top/bottom of the inclined deferent and zero 
at the nodes.  The Ptolemaic procedure to 
compute the latitude for a superior planet is to 

use Table 1 with the anomaly, , as an 
argument.  For Mars, the first column, C1, is 
used for longitude of centre arguments less than 
90˚ and larger than 270˚, the second one C2, for 
longitude of centre arguments between 90˚ and 
270˚. 

The longitude of centre argument, , is as 
stated above, the longitude of the epicycle 
centre, measured from the top of the deferent 
circle.  Mathematically the latitude is then com-
puted from  
 

β = C1,2 ( ) sin( + 90˚)             (1) 
 

In the Almagest the last sine function is rep-
resented by a separate column. 
 

The original unit of the tables is degrees: 
minutes, and I have converted this to decimal 
units in an extra third column for each planet in 
Table 1. 

 
3.2  Inferior Planets 
 

The inferior planets have a more complicated 
mechanism to account for the latitude.  As for 
the superior  planets the deferent circle is inclin- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 1: The Mars volvelle. 
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ed by an angle relative to the ecliptic plane, but 
this inclination is variable, being zero when the 
planet is at the nodes and maximum/minimum 
at right angles to the nodes.  Secondly, the 
epicycle is, as for the superior planets, deviated 
relative to the deferent plane, but the deviation 
is zero at the top/bottom of the deferent and 
maximum/minimum at the nodes.  Thirdly, the 
epicycle has a rocking motion perpendicular to 
the epicycle deviation.  The rocking angle (slant, 
obliquity) is zero at the nodes and maximum/ 
minimum at the top/bottom of the deferent.   
This complicated motion is then approximated 
by Ptolemy as a sum of three separate lati-
tudes: 
 

β = C0 sin2( + 90˚) + C1( ) sin()  

+ C2( )  sin( + 90˚)             (2) 
 

The first term describes the inclination of the 

deferent plane, the second term the deviation of 
the epicycle, and the third term the rocking 
motion.  C0 is a fixed angle being 0˚10’ ≈ 0.167˚ 
for Venus and –0˚45’ = –0.75˚ for Mercury.  

C1() and C2() are to be taken from Table 1 
with the anomaly as an argument.  For Mercury 
the second and third terms in (2) are taken with 
the opposite sign. 
 

The factor  is 1 for Venus but for Mercury it 

is 0.9 if  < 180˚ and 1.1 if  > 180˚. 
 

The combined effect of the three terms in (2) 
is “... to give the epicycle a heaving, pitching, 
and rolling motion like that of a ship in a heavy 
sea.” (Pedersen, 1974: 370). 
 

In the C1 table I have changed the sign of the 

values of   for values larger than 90˚ and less 
than  270˚  in  the  decimal  column.  This  makes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2:  The Venus volvelle. 
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some of the subsequent calculations easier.  In 
the Almagest this is taken care of by a special 
rule. 

 

On my website http://home.thep.lu.se/~larsg/ 
Site/Welcome.html there is a Java application 
(LatitudeViewer1.jar) that can be freely down-
loaded.  It illustrates in a qualitative way the 
complicated motion of the deferent and epicycle 
for the superior and inferior planets in the Ptol-
emaic model.  You will need to have the Java 
Runtime Environment (JRE) installed on the 
computer in order to run the file.  The JRE can 
be freely downloaded from https://www.java. 
com/en/download.  On a Macintosh you may 
need to change your security settings in System 
Preferences/Security & Privacy/Open Anyway 
button to be allowed to run the program. 
 

4  DISCUSSION AND CONCLUDING 
    REMARKS 
 

It is interesting to speculate how Apianus con-
structed the quite intricate set of lines showing 
the latitudes.  One way would be to invert the 
mathematical relations above, something that is 
analytically impossible, but could be done num-
erically.  Another and more likely way for Api-
anus would be to try to graph the relations and 
then use the graphs to extract the necessary 
data.  I used Microsoft Excel to make tables for 
the three planets Mars, Venus, and Mercury for 

a selected set of values of   and  and then 
graphed these tables.  Figures 5, 6, and 7 show 
the results. 
 

For Mars and Venus, you use the anomaly  

 ’ = 360 –   if   >180˚.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: The Mercury volvelle. 
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It is quite tedious to do the computations lead-
ing to these graphs but mathematically it is 
rather simple and could be done by even an in-
experienced person given a set of simple in-
structions.  In order to construct his volvelles 
with some accuracy, Apianus would certainly 
have to draw the graphs in a larger scale than 
can be represented in this paper.  But I have 
found it quite possible to use the graphs to find 

specific points (, ) in the volvelle plane and 
then to connect the points by lines and reproduce 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: (, ) graph for Mars. 
 

 
 
 
 
 
 
 
 
 
 
Figure 4: Deferent inclination and epicycle deviation. 
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Table 1: Fundamental tables 
 

Anomaly Mars Venus                       Mercury 

 C1 C2 C1 C2 C1              C2               

0 360 0 5 0.08 0    2 0.03 1 3 1.05 0 0 0 1 46 1.77 0 0 0.00 
6 354 0 7 0.12 0    3 0.05 1 2 1.03 0 8 0.13 1 45 1.75 0 11 0.18 

12 348 0 9 0.15 0    4 0.07 1 1 1.02 0 16 0.27 1 44 1.73 0 22 0.37 
18 342 0 11 0.18 0    5 0.08 1 0 1.00 0 24 0.40 1 43 1.72 0 33 0.55 
24 336 0 13 0.22 0    6 0.10 0 59 0.98 0 33 0.55 1 40 1.67 0 44 0.73 
30 330 0 14 0.23 0    7 0.12 0 57 0.95 0 41 0.68 1 36 1.60 0 55 0.92 
36 324 0 16 0.27 0   9 0.15 0 55 0.92 0 49 0.82 1 30 1.50 1 6 1.10 
42 318 0 18 0.30 0 12 0.20 0 51 0.85 0 57 0.95 1 24 1.40 1 17 1.28 
48 312 0 21 0.35 0 15 0.25 0 46 0.77 1 5 1.08 1 16 1.27 1 27 1.45 
54 306 0 24 0.40 0 18 0.30 0 41 0.68 1 13 1.22 1 8 1.13 1 35 1.58 
60 300 0 28 0.47 0 22 0.37 0 36 0.60 1 20 1.33 0 59 0.98 1 44 1.73 
66 294 0 32 0.53 0 26 0.43 0 29 0.48 1 28 1.47 0 49 0.82 1 51 1.85 
72 288 0 36 0.60 0 30 0.50 0 23 0.38 1 35 1.58 0 38 0.63 2 0 2.00 
78 282 0 41 0.68 0 36 0.60 0 16 0.27 1 43 1.72 0 26 0.43 2 7 2.12 
84 276 0 46 0.77 0 42 0.70 0 8 0.13 1 50 1.83 0 16 0.27 2 14 2.23 
90 270 0 52 0.87 0 49 0.82 0 0 0.00 1 57 1.95 0 0 0.00 2 20 2.33 
96 264 0 59 0.98 0 56 0.93 0 10 -0.17 2 3 2.05 0 15 -0.25 2 27 2.45 
102 258 1 6 1.10 1 4 1.07 0 20 -0.33 2 9 2.15 0 31 -0.52 2 28 2.47 
108 252 1 14 1.23 1 13 1.22 0 32 -0.53 2 15 2.25 0 48 -0.80 2 29 2.48 
114 246 1 23 1.38 1 23 1.38 0 45 -0.75 2 20 2.33 1 6 -1.10 2 30 2.50 
120 240 1 34 1.57 1 37 1.62 0 59 -0.98 2 25 2.42 1 25 -1.42 2 29 2.48 
126 234 1 47 1.78 1 51 1.85 1 13 -1.22 2 28 2.47 1 45 -1.75 2 26 2.43 
132 228 2 1 2.02 2 10 2.17 1 38 -1.63 2 30 2.50 2 6 -2.10 2 20 2.33 
138 222 2 16 2.27 2 33 2.55 1 57 -1.95 2 30 2.50 2 26 -2.43 2 11 2.18 
144 216 2 34 2.57 2 56 2.93 2 23 -2.38 2 28 2.47 2 47 -2.78 2 0 2.00 
150 210 2 55 2.92 3 29 3.48 3 13 -3.22 2 22 2.37 3 7 -3.12 1 45 1.75 
156 204 3 16 3.27 4 9 4.15 3 43 -3.72 2 12 2.20 3 26 -3.43 1 29 1.48 
162 198 3 38 3.63 4 55 4.92 4 26 -4.43 1 55 1.92 3 42 -3.70 1 10 1.17 
168 192 4 0 4.00 5 43 5.72 5 24 -5.40 1 27 1.45 3 54 -3.90 0 48 0.80 
174 186 4 14 4.23 6 26 6.43 6 24 -6.40 0 48 0.80 4 2 -4.03 0 28 0.47 
180 180 4 21 4.35 7 30 7.50 7 12 -7.20 0 0 0.00 4 5 -4.08 0 0 0.00 
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Figure 6: (, ) graph for Venus. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: (, ) graph for Mercury. 
 

Apianus’ results quite well.  It is even possible to 
interpolate between the curves and in that way 

find points for intermediate values of   and .  
As an illustration of how the construction may 

have been done, we can use the Mercury graph, 
Mercury being the most complicated case. 
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Following the light blue curve ( = 0˚) in Fig-

ure 7, it crosses β = –2˚ for  = 45˚ (1 sign 15˚). 
This point is marked by a red dot in Figure 8 and 
in the graph.   The curve then just touches  β = 

–3˚ for   = 110˚, then crosses β = –2˚ again for 

  = 158˚.  
 

The yellow curve ( = 90˚) crosses β = –1˚ 

for  = 60˚, passes β = 0˚ for  = 90˚, then β = 1˚ 

for  = 90˚, β = 2˚ for  = 130˚, β = 3˚ for   = 

147˚, and finally β = 4˚ for  = 172˚.  These 
points are marked in blue. 
 

The dark blue curve ( = 180˚) crosses         

β = 0˚ for  = 22˚, then β = 1˚ for  = 55˚, almost 

touches β = 2˚ for  = 115˚, again crosses β = 1˚ 

for  = 153 ˚ and β = 0˚ for  = 170˚.  These 
points are marked in green. 
 

Given some patience it is no doubt possible 
to use this procedure to construct the latitude 
curves of the volvelles.  If one does a detailed 
check it is found that Apianus has some errors 
in his latitude curves in the volvelles of the in-
ferior planets where the latitude curves change 

direction, like for Mercury around  = 60˚,  = 
15˚.  But this is an exception; in general the 
points generated agree very well with the vol-
velles. The craftsmanship and elegance of these 
volvelles once again confirms the impression 
that Petrus Apianus had one of the most inter-
esting and creative minds of the Middle Ages. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8: Mercury verification. 
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