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Abstract:  For finding the true positions of the Sun, the Moon and the five planets the Indian classical astronomical 
texts use the concept of the manda epicycle which accounts for the equation of the centre.  In addition, in the case of 
the five planets (Mercury, Venus, Mars, Jupiter and Saturn) another equation called śīghraphala and the correspond-
ing śīghra epicycle are adopted.  This correction corresponds to the transformation of the true heliocentric longitude 
to the true geocentric longitude in modern astronomy.  In some of the popularly used handbooks (karaṇa) instead of 
giving the mathematical expressions for the above said equations, their discrete numerical values, at intervals of 15°, 
are given.  

In the present paper using the data of discrete numerical values we build up continuous functions of periodic 
terms for the manda and śīghra equations.  Further, we obtain the critical points and the maximum values for these 
two equations. 
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1  INTRODUCTION 

The Grahalāghava (GL) is one of the most pop-
ular karaṇa texts of Indian astronomy, and was 
written by the famous sixteenth-century author 
Gaṇeśa Daivajña.  After Bhāskara-II of the twelfth 
century there was a decline for a brief period in 
the development of mathematics and astronomy 
in India.  But we see tremendous work was done 
in the south i.e., in Kerala and Maharashtra, giv-
ing rise to some of the great and eminent lum-
inaries like Nilakaṇṭa Somayājī and Gaṇeśa Dai-
vajña.  

Gaṇeśa Daivajña is unique because he dis-
pensed with trigonometric terms in his compu-
tations and replaced them with suitable algebra-
ic approximations.  This method helped many 
almanac (pañcāṅga) makers to do calculations 
in a simple way.  So even today, the GL is one 
of the popular texts among almanac-makers. 

The text of the GL consists of 187 verses 
(ślokas) distributed in 14 chapters.  In chapters 
2 and 3 the true positions of the Sun, the Moon 
and the five planets are discussed.  For the Sun 
and the Moon there is only one correction, name-
ly the mandaphala, which corresponds to the 
equation of the centre, taking into account the 
eccentricity of the body’s orbit.  But for the five 
planets, apart from the mandaphala one more 

equation called śīghraphala is applied.  Śīghra-
phala converts heliocentric position to geocent-
ric position of the planets.  In order to determine 
the two equations manda and śīghra, Gaṇeśa 
Daivajña gives discrete values, called man-
dāṅkas and śīghrāṅkas.  These are obtained by 
multiplying the actual manda and śīghra 
corrections by 10.  Further, these values are in 
arc minutes (kalās), and given in integers for 
every 15°.  Gaṇeśa Daivajña does not provide 
either the peripheries (paridhis) of the epicycles 
nor does he mentions explicitly the expressions 
for the two equations.  However, in the case of 
the Sun and the Moon he gives explicit approxi-
mate algebraic expressions for the equation of 
the centre.  In this paper we estimate the ranges 
of peripheries of the equations for each of the 
bodies. 

2  THE METHOD OF THE GRAHALĀGHAVA 
    FOR THE EQUATION OF THE CENTRE 

In obtaining the mean positions of the Sun and 
the Moon it was earlier assumed that these 
bodies moved in circular orbits around the Earth 
with uniform angular velocities.  However, obser-
vations revealed that the motions were non-
uniform.  The true positions were related to the 
epicyclic theory that is explained in the following 
section. 
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2.1  Epicyclic Theory and the Equation of the 
       Centre 
 

The theory is that while the mean Sun or the 
Moon move along a big circular orbit (see Figure 
1), the actual Sun and Moon move along a small-
er circle called an epicycle, whose centre is on 
the larger circle. 
 

The larger circle ABP with the Earth E as its 
centre is called the deferent circle (kakṣāvṛtta).  
Let A be the position of the mean Sun when the 
true Sun is farthest from the Earth.  The line AEP 
is called the apse line and AE is the radius 
(trijyā) of this orbit.  The epicycle, with A as 
centre and a prescribed radius (smaller than 
AE) is called the nīcoccavṛtta.  Let the apse line 
PEA cut the epicycle at U and N.  The two points 
U and N are respectively called the apogee (man-
docca) and the perigee (mandanīca) of the Sun.  
Note that as the Sun moves (as seen from 
Earth) along the epicycle, the Sun is farthest from 
the Earth at U and nearest at N. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Epicyclic theory. 

 
The epicyclic theory assumes that as the 

centre of the epicycle (i.e. mean Sun) moves 
along the circle ABP in the direction of the signs 
of the zodiac (from west to east) with the vel-
ocity of the mean Sun, the true Sun itself moves 
along the epicycle with the same velocity but in 
the opposite direction (from east to west).  
Further, the time taken by the Sun to complete 
one revolution along the epicycle is the same as 
that taken by the mean Sun to complete a revo-
lution around the orbit. 

 

Now in Figure 1, suppose the mean Sun 
moves from A to A’.  Let A’ and E be joined, 
cutting the epicycle at U’ and N’, which are the 
current positions of the apogee (mandocca) and 
the perigee (mandanīca).  While the mean Sun 
is at A’, suppose the true Sun is at S on the 
epicycle so that U’Â’S = U’ÊA.  Join ES, cutting 
the orbit (i.e., circle ABP) at S’.  Then A’ is the 
mean Sun (madhya Ravi) and S’ is the true Sun 

(spaṣṭa or sphuṭa Ravi).  The difference between 
the two positions viz., A’ÊS’ (or arc A’S’) is 
called the equation of the centre (mandaphala). 
 

In order to obtain the true position of the Sun, 
it is necessary to get an expression for the 
equation of the centre which will have to be 
applied to the mean position. 
 

In Figure 1 SC and A’D are drawn perpen-
dicular to U’N’E and UNE respectively.  The arc 
AA’ (or AÊA’), the angle between the mean Sun 
and the apogee, is called the mean anomaly 
(mandakendra, henceforth MK) of the Sun. 
 

We have, in the right-angled triangle A’DE, 
 

sin AÊA’ = sinDÊA’ = A’D /A’E 
 

so that, A’D = Rsin AA’ = RsinMK is called R 
sine of anomaly (mandakendrajyā), where R = 
A’E and MK = arc AA’ .  
 

From the similar right-angled triangles SCA’ 
and A’DE, we have 
 

SC /SA’ = A’D /AE’ 
 

and 
 

SC = (SA’ × A’D) /A’E 
 

Since SA’ and A’E are respectively the radii 
of the epicycle and the orbit, these are propor-
tional to the circumferences of the two circles; 
that is 
 

SA’/A’E = circumference of the epicycle/ 
circumference of the orbit 
 

 SC = (circumference of the epicycle/ 
circumference of the orbit) × A’D 
 

Taking the circumference of the orbit as 360°, 
we have 
 

SC = (circumference of the epicycle × 
mandakendrajyā) /360° 
 

Now, taking SC approximately the same as A’S’, 
the equation of the centre (mandaphala, hence-
forth MPH) is given by 
 

Rsin(MPH) = circumference of the epicycle × 
mandakendrajyā) /360° 
 

= (p /R) × RsinMK 
 

i.e. sin(MPH) = (p /R) × sinMK 
 

where RsinMK is the ‘Indian sine’ ( jyā)
1
 of the 

anomaly MK of the Sun.  The maximum value of 
the equation of the centre, i.e., sin(MPH) is p /R 
(in radians) or p /2π (in degrees). 
 

In his Grahalāghava, Gaṇeśa Daivajña gives 
the following verse to obtain the anomaly from 
the apogee (mandakendra) of the planet: 
 

If the bhuja (of the manda anomaly) is less 
than three rāśis (signs) then take that itself, if 
the anomaly is greater than three rāśis and 
less than six rāśis then consider the difference 
of six rāśis (180°) and the anomaly as the 
bhuja, if the anomaly is greater than six rāśis 
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and less than nine rāśis then subtract six rāśis 
(180°) from the anomaly to get the bhuja and if 
the anomaly is greater than nine rāśis and 
less than twelve rāśis then the remainder of 
subtracting it from twelve rāśis (360°) is the 
bhuja. (Grahalāghava, Ch-II, śloka -1; our En-
glish translation). 
 

This means the anomaly from the apogee 
(mandakendra, MK) = apogee (mandocca) of the 
planet – Mean planet.  MK is expressed as an 
acute angle; to get this, we use the following 
procedure:  
 

(1)  If 0° ≤ MK < 90° then MK itself is the argu-
ment (bhuja) i.e., bhuja = MK.  
(2)  If 90° ≤ MK < 180° then bhuja = 180° ‒ MK  
(3)  If 180° ≤ MK < 270° then bhuja = MK ‒ 180°  

(4)  If 270° ≤ MK < 360° then bhuja = 360° ‒ MK  
 

According to the Grahalāghava, the apogees of 
the heavenly bodies are as shown in Table 1.  
 

It is assumed that the apogee of the Moon 
varies, whereas those of the other bodies are 
fixed.  
 

The method of finding the equation of the 
centre of the Sun is explained in the following 
verse: 

 

The difference between the mandocca (apo-
gee) and the mean planet is called (manda) 
kendra (anomaly).  If the kendra is within six 
rāśis from Meṣa or within six rāśis from Tulā, 
(correspondingly) the mandaphala (the equa-

tion of the centre) is positive or negative. 
 

In the case of Ravi (Sun), divide the bhuja 
(of the mandakendra) by 9, subtract it from 20 
and multiply the result by itself; (this is the 
numerator).  Divide the numerator by the diff-
erence between 57 and one-ninth of the num-
erator. (Grahalāghava, Ch-II, śloka -2; our 
English translation). 

 

This means, find the anomaly from the apogee 
(MK) of the Sun and express MK in terms of 
bhuja of MK as explained earlier.  Denote bhuja 
of MK by BMK.  
 

(1)  Subtract (BMK /9) from 20 and multiply this 
by (BMK /9).  
(2)  Divide the result of (1) by 9.  
(3)  Subtract the result of step (2) from 57.  
(4)  Express the results of step (3) and step (1) 
in seconds of arc (vikalās) and divide the result 
of step (1) by that of step (3).  
 

Then the result is the equation of the centre of 
the Sun. 
 

i.e., The equation of the centre of the Sun =  

[20 ‒ (BMK /9)] × (BMK /9) / [57 ‒ (20 ‒ 

(BMK /9)) × (BMK /9) / 9] 
 

Note:  
 

(1)  In devising the above equation the author 
dispenses with the trigonometric ratio sine.  

(2)  If the anomaly from the apogee is within 6 
signs from Aries (Meṣa) (i.e., 0° < MK < 180°) 
then the equation of the centre is additive.  
(3)  If the anomaly from the apogee is within 6 
signs from Libra (Tulā) (i.e., 180° < MK < 360°) 
then the equation of the centre is subtractive.  
(4)  If the anomaly is 0° or 180° then the equa-
tion of the centre is zero.  
 
2.2  Rationale for the Equation of the Centre  
       of the Sun 
 

Śrīpati Bhaṭṭa’s (ca. tenth century) expression for 
the R sine (jyā) of the anomaly is as follows: 
 

Subtract the manda anomaly from 180 and 
multiply by itself; (this is the numerator).  Div-
ide the numerator by the difference between 
10125 and one-fourth of the numerator.  (Fin-
ally) thus obtained result is multiplied by 120 
to get the jyā (Rsine) of the manda anomaly of 
the Sun. (Siddhānta-śekhara, Ch-III, śloka-17; 

our English translation). 
 

This implies the anomaly from the apogee (MK) 
in degrees is subtracted from 180° and the re-
mainder is multiplied by the same quantity (MK).  
Then the result is divided by its one-fourth, sub- 
 

Table 1: Apogee of the heavenly bodies. 
 

Body Apogee 

Sun   78° 

Mars 120° 

Mercury 210° 

Jupiter 180° 

Venus   90° 

Saturn 240° 

 

tracted from 10125.  This result is multiplied by 
twice sixty (i.e., by 120). 
 

i.e. In symbols, R sine of anomaly = [(180 – 

MK)MK × 120] / 10125 – [(180 – MK) /4] × 

MK 
 

where MK stands for the bhuja of the anomaly 
 

i.e., R sine (MK) = [(180 – MK)MK × 480] / 
[40500 – (180 – MK)MK ] 
 

= [(180 – MK) / 9] [(MK /9) × 480] / 

[405000/(9 × 9)] – [(180 -- MK ) /9](MK /9) 
 

(dividing by 9 × 9) 
 

= [20 – (MK /9)[MK /9] × 480] / 500 – [20 – 

(MK /9)](MK /9)                       (1) 

The above derivation is based on the signifi-
cant and unique formula of Bhāskara I (c. 629 
CE); 
 

i.e., sin θ = [4 (180° – θ) θ ]  / [40500 – (180° – θ) 
θ ]  
 

Now, according to the Grahalāghava the max-
imum equation of the centre (parama manda-
phala) of the Sun 
 

= (125°/57)  2° 11′ 34″. 
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Table 2: The Sun’s equation of the centre, MPH and manda 
periphery, p 
 

MK MPH Manda periphery (p) 

15° 0.570 13°.834 

30° 1.093 13°.735 

45° 1.541 13°.69 

60° 1.886 13°.68  

75° 2.104 13°.689 

90° 2.179 13°.692 

 

  The equation of the centre of the Sun = 
(125°/57) × (mandakendrajyā) /120) 
 

= [125 / (57 × 120)] × [(20 – (MK /9)(MK /9) × 

480] / 500 – [20 – (MK /9)(MK /9)]  Using (1) 
 

= (125 / (57)[(20 – (MK /9)(MK /9) × 4] / 500 

– [20 – (MK /9)](MK /9) 
 

= (500 / (57)[(20 – (MK /9)(MK /9)] / 500 – 

[20 – (MK /9)](MK /9) 

= [(20 – (MK /9)](MK /9) / [500/(500/57)] – 

[20 – (MK /9)](MK /9) / (500/57) 
 

= [(20 – (MK /9)](MK /9) / 57 – [20 – 

(MK /9)](MK /9) / 8.771928 
 

i.e., Equation of the centre of the Sun 
 

 [(20 – (MK /9)](MK /9) / 57 – [20 – (MK /9)] 

(MK /9) / 9] 
 

The exact formula for the equation of the 
centre of the Sun is sin

‒1
[(p /R )sin MK ) where 

R = 360°, p is the periphery of the manda 
epicycle (in degrees) and MK is the Sun’s 
anomaly (from the apogee, mandocca).   
 

Using this formula with the range of MK from 
15° to 90° the Sun’s equation of the centre, 
MPH, and the periphery (paridhi) of the manda 
epicycle, p, are estimated and listed in Table 2. 
 

In order to estimate the manda periphery of 
the Sun from 0° to 90°, we adopt the formula p = 
A + B sin (MK).  The related procedure is 
explained in later sections.  The periphery of the 
Sun for MK = 0° is 14°.001 and for MK = 90° is 
13°.692. 
 

Similarly, the equation of the centre of the 
Moon is given in the following verse 
 

In the case of Vidhu (Moon), one-sixth of the 
manda anomaly is subtracted from 30 and the 
remainder is multiplied by the same; (this is 
the numerator).  This numerator is divided by 
the difference between 56 and one-twentieth 
of  the numerator.   This  is  Moon’s  equation  of 

 
Table 3: The Moon’s equation of the centre, MPH and 
manda periphery, p 
 

MK MPH Manda periphery (p) 

15°  1.307  31°.752  

30°  2.512  31°.573  

45°  3.547  31°.526  

60°  4.347  31°.544  

75°  4.854  31°.576  

90°  5.027  31°.591  

the centre. (Grahalāghava, Ch-II, śloka -3; our 
English translation). 

 

This can be expressed as the following formula: 
 

Equation of the centre of the Moon = [30 – 

(MK /6)](MK /6) / 56 – [30 – (MK /6)(MK /6) / 

20] 
 

2.3  Rationale for the Equation of the Centre  
      of the Moon 
 

We have R sine of anomaly = [(180 – MK)MK × 
480)] / [40500 – (180 – MK)MK]  
 

According to Śrīpati Bhaṭṭa, dividing the numer-
ator and the denominator by 6 × 6, 
 

Rsin(MK) = [(180 – MK) /6)]MK  × (480/6) / 

(40500/ 6 × 6) – [(180 – MK /6)](MK /6) 
 

= (30 – MK /6)(MK/6)  × 480 / 120 × [1125 

– [30 – (MK /6)](MK /6)          (2) 
 

According to the Grahalāghava the maximum 
equation of the centre of the Moon = 5°. 
 

 Equation of the centre of the Moon = (5 × R 
sine of anomaly) / 120 
 

= 5 × [30 – (MK /6)](MK /6) × 480 / 120 × 

[1125 – [30 – (MK /6)](MK /6)] using (2) 
 

= (2400/120) [30 – (MK /6)](MK /6)  / [1125 – 

[30 – (MK /6)](MK /6)] 
 

= 20[30 – (MK /6)](MK/6) / [1125 – [30 – 

(MK /6)](MK /6)]  
 

= [30 – (MK /6)](MK /6) / (1125/20)[30 – 

(MK/6)](MK/6) / 20 
 

= [30 – (MK /6)](MK /6) / 56.25 – [(30 – 

MK /6)](MK /6) / 20 
 

i.e., Equation of the centre of the Moon  [30 – 

(MK /6)](MK /6) / 56 – [(30 – MK /6)(MK /6)] / 

20 
 

In the similar way as in the case of the Sun’s 
periphery, the Moon’s periphery is estimated 
and listed in Table 3. 
 

The periphery of the Moon for MK = 0° is 
32°.075 and for MK = 90°, it is 31°.591. 
 

3  EQUATION OF THE CENTRE OF THE 
    PLANETS 
 

In the case of the five planets in the GL, instead 
of providing direct expressions, Gaṇeśa Daivajña 
gives discrete numerical values for the equation 
of the centre (mandaphala) in degrees at inter-
vals of 15° of the manda anomaly.  He has mult-
iplied the equation of the centre by 10 (to avoid 
fractions) and calls them as mandāṅkas, as giv-
en in Table 4.  
 

In order to estimate the underlying manda per- 
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Table 4: Discrete values of the equation of the centre (mandāṅkas) of the planets. 
 

Planets 15° 30° 45° 60° 75° 90° 

Mars 29 57 85 109 124 130 

Mercury 12 21 28   33   35   36 

Jupiter 14 27 39   48   55   57 

Venus 06 11 13   14   15   15 

Saturn 19 40 60   77   89   93 

 
ipheries of the different planets, we adopt the 
following two procedures: 
 

(1)  As a first approximation, the  
 

Equation of the centre (MPH) = (p /R)sin(MK) 
in radians            (3) 
 

 p = (MPH  × R)  / sin(MK )  in degrees.        (4) 
 

(2)  As the second approximation, or the correct 
expression  
 

sin(MPH)  = (p /R)sin(MK)  in radians            (5) 
 

where p is periphery of the epicycle, MK is the 
manda anomaly and R is 2π radians or 360°. 

 

As an example, based on equation (4) the 
manda periphery (p) of Mars is given in Table 5. 
 

We find from Table 5 that the manda periphery 
increases  from  70°.40145  to  81°.68142  as  the 
manda anomaly (MK) increases from 15° to 90°.  
 

Note: The manda periphery for MK = 0 can-
not be obtained from equation (4) since the de-
nominator vanishes.  
 

Now since p varies from 70°.40145 to 
81°.68142, we express the periphery p for any 
given MK in the form 
 

p = A + B sin(MK)             (6) 
 

for which we have to determine the constant 
coefficients A and B.  Tentatively, for MK = 30° 

and 90°, we get the respective linear equations 
as 
 

p = A + (B /2)   and   p = A + B        (7a) 
 

Solving these equations, we obtain A = 
61°.5752 and B = 20°.10622.  (It is to be noted 
that we do not get the same values of A and B 
as above if we consider the other pairs of the 
linear equations.)  
 

This means that for the above values of A 
and B, periphery p varies from 66°.77908 to 
81°.68142 as MK varies from 15° to 90° in the 
case of Mars.  Similarly, estimating the manda 
peripheries for the other four planets namely, 
Mercury, Venus, Jupiter and Saturn, we get the 
values as shown in Table 6.  
 

When MK = 0°, formula (6) becomes p = A 
hence the above table of manda peripheries can 
be now listed for MK = 0° to 90° by solving 
equations (7) by finding the A and B values. 
 

Now, considering the actual expression for 
the equation of the centre given by equation (5) 
we have 

sin(MPH)  = (p /R)sin(MK)    

p = [R  × s in (MPH)] / sin(MK)         (7b) 
 

Following the same procedure as for Mars in 
the case of the remaining four planets we get 
the manda peripheries as shown in Table 7.  

 

From Table 8, we find that the manda peri-
phery ‘p ’ increases as anomaly MK increases 
from 0° to 90° in the case of superior planets viz. 
Mars, Jupiter and Saturn.  On the other hand, in 
the case of the two interior planets Mercury and 
Venus ‘p ’ decreases as MK increases from 0° to 
90°.  
 

Table 5: Manda periphery of Mars in degrees. 
 

MK MPH Manda periphery (p) 

15°   2.9 70°.40145 

30°   5.7 71°.62831 

45°   8.5 75°.52901 

60° 10.9 79°.08165 

75° 12.4 80°.65991 

90° 13 81°.68142 
 

Table 6: The range of manda peripheries of other planets. 
 

Planet Manda periphery (p) 

MK (15°) MK (90°) 

Mercury  28°.20784  22°.61947  

Jupiter  33°.01997  35°.81416  

Venus  15°.944  09°.42478  

Saturn  46°.25  58°.43363  
 

Table 7: The range of manda peripheries of all the planets 
for MK = 0° and 90° (using equation 7a). 
 

Planet Manda periphery (p) 

MK (0°) MK (90°) 

Mars 61°.5752 81°.68142 

Mercury  30°.15929  22°.61947  

Venus  18°.22124  09°.42478  

Jupiter  32°.04424  35°.81416  

Saturn  42°.09733  58°.43363  
 

Table 8: The range of manda peripheries of all the planets 
(using equation 7b). 
 

Planet Manda periphery (p) 

MK (0°) MK (90°) 

Mars 62°.03774 80°.9824 

Mercury  30°.16235  22°.60459  

Jupiter  32°.07817  35°.75511  

Venus  18°.220618  09°.42370  

Saturn  42°.09733  58°.43363  

 

Manda peripheries according to some Indian 
classical astronomical texts are listed in Table 9, 
together with our computations for comparison.  
 

From Table 9, it is interesting to note that the 
same behaviour is seen in the Āryabhaṭīya also.  
In fact, even the ranges of variation of the manda 
periphery as estimated based on the GL are 
close to those of  the Āryabhaṭīya.   However, in 
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Table 9: Comparison of manda peripheries from different texts. 
 

Bodies Computed Values based on GL The Āryabhaṭīya The Sūryasiddhānta 

Sun 13°.69  ̶  14° 13°.5 13°.66  ̶ 14° 

Moon 31°.59  ̶  32°.07 31°.5 31°.66  ̶  32° 

Mars 62°.03  ̶  80°.98 63°  ̶  81° 72°  ̶  75° 

Mercury 30°.16  ̶  22°.60 31°.5  ̶  22°.5 28°  ̶  30° 

Jupiter 32°.07  ̶  35°.75 31°.5  ̶  36°.5 32°  ̶  33° 

Venus 18°.22  ̶  09°.42 18°  ̶  9° 11°  ̶  12° 

Saturn 42°.09  ̶  58°.43 40°.5  ̶ 58°.5 48°  ̶  49° 

 
Table 10: Discrete values of the equation of the conjunction (śīghrāṅkas) of the planets. 

 

Planets 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180° 

Mars 58 117 174 228 279 325 365 393 400 368 249 0 

Mercury 41   81 117 150 178 199 212 212 195 155   89 0 

Jupiter 25   47   68   85   98 106 108 102   89   66   36 0 

Venus 63 126 186 246 302 354 402 440 461 443 326 0 

Saturn 15   28   39   48   54   57   57   53   45   33   18 0 

 
 

the case of the Sun and the Moon the peri-
pheries vary as in the Sūryasiddhānta. 
 
4  EQUATION OF THE CONJUNCTION OF  
   THE PLANETS 
 

Gaṇeśa Daivajña has provided śīghrāṅkas simi-
larly as in the case of the equation of the centre 
(mandaphala) for the convenience of computa-
tion.  Actual equations of the conjunction (śīgh-
rāphalas) are obtained from these śīghrāṅkas 
dividing by 10.  The discrete numerical values of 
śīghrāṅkas for the intervals of 15° degrees are 
listed in Table 10.  
 

In order to determine the śīghra peripheries 
of different planets we adopt the following pro-
cedure: 
 

Śīghraphala (SPH) = sin
‒1[(p /360) sin (SK)] /  

√[(p /360)
2
 ± 2(p /360)cos(SK) + 1]         (8) 

 

where p in the śīghra periphery, SPH is the 
śīghraphala and SK is the anomaly of the con-
junction (śīghrakendra). 
 

Here SK is the anomaly of the conjunction 
(with the Sun) i.e., SK is the Mean Sun ‒ Mean 
planet for the superior planets.  In the case of 
Mercury and Venus, SK is the Mean planet ‒ 
Mean Sun. 
 

Let      (p /360) = r           (9) 

SPH = sin
‒1[r sin(SK)] / √[(r )

2
 ± 2(r )cos(SK) 

+ 1]    or 

 
Table 11: Śīghra periphery of Mars. 

 

SK SPH Śīghra periphery (p) 

  15°   5.8 227°.545 

  30° 11.7 232°.500 

  45° 17.4 232°.366 

  60° 22.8 230°.740 

  75° 27.9 229°.958 

  90° 32.5 299°.345 

105° 36.5 230°.150 

120° 39.3 231°.054 

135° 40.0 232°.287 

150° 36.8 234°.621 

165° 24.9 236°.297 

180° 0 0° 

sin(SPH) = [r sin(SK)] / √ [(r )
2
 ± 2(r )cos(SK) + 

1]           (10) 
 

On squaring both the sides and simplifying 
equation (10) we get a following equation: 
 

r
2
sin

2
(SPH) + 2r cos (SK)sin

2
(SPH) + 

sin
2
(SPH) – r

2
 sin

2
(SK) = 0 

 

[sin
2
(SPH) – sin

2
(SK)]r

2
 + 2cos(SK) sin

2
(SPH) r 

+ sin
2
(SPH) = 0 

 

This equation is of the form Ar
2
 + Br + C = 0, 

which is a quadratic equation, where A = 
[sin

2
(SPH) – sin

2
(SK )], B = 2cos(SK) 

sin
2
(SPH )  and C = sin

2
(SPH). 

 

The roots of a quadratic equation Ar
2
 + Br + 

C = 0 are: 
 

r = ‒B ± √ [B
2 

 ̶  4AC] / 2A 
 

r = ‒B + √ [B
2
  ̶  4AC] / 2A   or  

 

r = ‒B ‒ √ [B
2
  ̶  4AC] / 2A 

 

Between these two roots, the valid solution is 
provided by the equation 
 

r = ‒B ‒ √ [B
2
  ̶  4AC] / 2A 

 

From equation (9) we have p = 360° × r. 
 

Thus the śīghra periphery 
 

p = 360° × ‒B + √ [B
2
  ̶  4AC] / 2A            (11) 

 

Using the above equations we computed the 
śīghra peripheries of Mars and listed the values 
in Table 11. 
 

From Table 11 as SK varies from 15° to 165° 

the śīghra periphery ‘p ’ varies from 227°.545 to 
236°.297.  We express the śīghra periphery ‘p’ 
for any given SK in the form 
 

p = A + Bsin(SK)         (12) 
 

To determine A and B we choose, for example 
SK = 30° and 165°.  By solving the linear    
equations, we obtained A = 240°.372 and          
B =  ‒15°.7429. 
 

When SK = 0° or 180° equation (12) becomes 
p = A.   Hence we can determine the śīghra peri- 
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Table 12: The range of śīghra peripheries of all the planets for MK= 0° and 90°. 
 

Planet Śīghra periphery (p) 

SK (0°) SK (180°) 

Mars 230°.8441   236°.2975 

Mercury 133°.0147   137°.4724 

Jupiter   68°.1567       72°.55133 

Venus 259°.0559 262°.653 

Saturn     37°.13942        40°.36791 

 
Table 13 : Comparison of śīghra periphery values from different texts. 

 

Planet Computed Values Based on the GL  The Āryabhaṭīya The SūryaSiddhānta 

Mars 230°.8441   ̶ 236°.2975 229°.5   ̶ 238°.5 232°   ̶ 235° 

Mercury 133°.0147   ̶ 137°.4724 130°.5   ̶ 139°.5 132°   ̶ 133° 

Jupiter 68°.1567   ̶ 72°.55133 67°.5  ̶  72° 72°   ̶ 70° 

Venus 259°.055   ̶ 262°.653 256°.5   ̶ 265°.5 260°   ̶ 262° 

Saturn 40°.36791   ̶ 37°.13942 40°.4  ̶  36° 40°   ̶ 39° 

 
pheries of planets from the range of SK = 0° to 
180° which are listed in Table 12.  
 

The above values of śīghra peripheries are 
compared with other texts to draw a conclusion 
on our method of computation (see Table 13). 
 
5  CONCLUDING REMARKS 
 

In the above sections we have analyzed the 
discrete mandāṅkas and śighrāṅkas given in the 

Grahalāghava of Gaṇeśa Daivajña.  We have 
obtained the ranges of the corresponding manda 
peripheries for all bodies and śīghra peripheries 
for the five planets and compared them with 
those of the Āryabhaṭīya and in the Sūryasidd-
hānta.  We find that the ranges of peripheries of 
planets are closer to those of the Āryabhaṭīya, 
while ranges of manda peripheries of the Sun 
and the Moon vary as in the Sūryasiddhānta.  
However the results obtained are approximate 
ones; the reasons for this are: 
 

(1) The equation of the centre and the conjunct-
tion (manda and śīghraphalas) given in the GL 
are over wide intervals of 15°; and  

(2) The given numerical values are in integers, 
avoiding fractions in the case of the five planets.  
 

The constants A and B in equations (7) and (8) 
obtained are slightly different for different choices 
of related linear equations.  This discrepancy is 
due to the approximations mentioned above. 
 
6  NOTES 
 

1.  Āryabhaṭa I (born 476 C.E) gives, just in one 
śloka (verse), the rule to obtain the jyā (R 
sine) of any angle between 0° to 90° at an 

interval of 3° 45.  He gives the differences 
between successive values in arc-minutes 
(kalās).  Āryabhaṭa’s value for the constant 

co-efficient R is 3438, which is the nearest 
integer value to a radian. 
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