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Abstract: In this paper we investigate three Burmese calendars: the Arakanese, Makaranta and Thandeikta 

calendars.  It is shown that the lunar calendar of the two first ones imply a tropical solar year, something that puts the 
lunar calendar out of phase with the sidereal solar calendar used and possibly indicates a Hellenistic origin.  We then 
examine the calendars of Thailand, Laos and Cambodia, which superficially are similar to the Burmese calendars but 
have a completely different system of intercalation (Gislén, 2018; Ôhashi, 2006).  Because Thailand, Laos and 
Cambodia have virtually the same luni-solar calendars, the Thai calendar is examined as a typical example. 
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1  BURMA (MYANMAR) 

1.1  The Burmese Calendars 

The Burmese luni-solar calendars (Htoon-Chan, 
1918; Irwin, 1909) have a clear Indian origin but 
with some very important differences.

1
  The cal-

endrical schemes use mean quantities for the 
Sun and the Moon but for the astronomical cal-
culations use true longitudes are used.  The 
epoch of the original calendars is CE 22 March 
638 and they generally count in elapsed years, 
the first year being year 0.  The parameters of 
the original Burmese solar calendar are the orig-
inal Sūryasiddhānta parameters

2
 but scaled

down by a factor of 5400, giving the Sun 292207 
days in 800 year and a sidereal year of 
29207/800 = 365.25875 days.  The lunar calen-
dar is based on the fact that 703 tithis (lunar 
days or 1/30

th
 of a synodic month) correspond to

692 solar days.  This gives a synodic lunar month 
of (30 × 692)/703 = 29.530583 days, an excellent 
approximation of the true synodic month.   

The original Burmese calendars used a Met-
onic intercalation scheme for the lunar months, 
having 7 intercalary months in 19 years, an inter-
calary year having 13 lunar months instead of 
12 months.  The years with month intercalation 
are number 2, 5, 7, 10, 13, 15, and 18 in the 19-
year cycle where the number in the cycle is 
calculated by the year modulus nineteen.  This 
gives 19 × 12 + 7 = 235 lunar months in 19 
years.  Each lunar month contains exactly 30 
tithis, thus in the 19-year cycle there are 235 × 
30 = 7050 tithis.  The number of solar days will 
then be (7050 × 692)/703 = 6939.687055 days.  
The mean solar year will have 6939.687055/19 = 
365.24667 days.  This is a tropical solar year 
equal to Hipparchus‘ tropical year of 365 + ¼ – 
1/300 days, something that could indicate a 
Hellenistic influence.  As will be seen below, this 

year length causes problems when combined 
with the sidereal year and could be an indication 
that the lunar and solar calendars were intro-
duced in Burma at different times. 

The lunar calendar has a normal year of 12 
lunar months with alternating 29 and 30 days, in 
total 354 days.  The names and lengths of the 
Burmese months (in days) are given in Table 1. 

Table 1: Burmese months. 

Name Days 

Tagu (တန်ခူး) 29 

Kason (ကဆုန် ) 30 

Nayon (နယုန်) 29/30 

Waso (ဝါဆုိ) 30 

Wagaung (ဝါခောင်) 29 

Tawthalin (တော်သလင်း) 30 

Thadingyut (သီတင်းကျွတ်) 29 

Tazaugmon (တန်ဆောင်မုန်း) 30 

Nadaw (နတ်တော်) 29 

Pyatho (ပြာသို) 30 

Tabodwe (တပ့ုိတဲွ) 29 

Tabaung (တပေါင်း) 30 

There are two variants of the early Burmese 
calendar: the Arakanese and the Makaranta.  
Both have an intercalary month with 30 days.  
The Arakanese calendar inserts this after the 
first month, Tagu, while the Makaranta inserts it 
after the fourth month, Waso.  With 7 intercalary 
years in 19 years there are (354 × 19) + (7 × 30) 
= 6936 days.  In order to have a calendar that 
keeps pace with the mean Moon an additional 
6939.687055 – 6936 = 3.687055 days are need-
ed in each 19-year cycle.  This is done by the 
intercalation of extra days.  In order to determine 
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where to insert these days there is a canonical 
scheme as introduced in the next section. 
 
1.2  Day Intercalation 
 

In the Burmese calendars an intercalary day can 
only be inserted in a year that also has an 
intercalary month.  The intercalary day is added 
to the end of the third month, Nayon, which will 
then have 30 days.  There will then be three 
kinds of year, normal years with 354 days, years 
with an intercalary month and 384 days (wan-
ngè-tat), and years with both an intercalary month 
and an intercalary day and 385 days (wan-gyi-
tat).  To determine which years will have an in-
tercalary day there is a quantity called the avo-
man that essentially is a measure of the excess 
of tithis relative to the solar days.  The Maka-
ranta calendar uses the avoman of the second 
Waso Full Moon (2WFM) as an indicator of 
when to intercalate a day.  The scheme to com-
pute the 2WFM avoman for any year with an 
intercalary month is as follows: 
 

1)  Take the number of elapsed years and multi-
ply by 12 in order to get the number of lunar 
months. 
2)  Add 4, the number of elapsed months up to 
the second Waso, to get the total number of 
elapsed ordinary months, m. 
3)  Compute the number of intercalary months: 
(m·× 7)/(12 × 19) = (m × 7)/228.  This imple-
ments the condition that there be seven inter-
calary months in nineteen years. 
4)  Add the number of intercalary months to the 
number of ordinary months to get the total num-
ber of elapsed months. 
5)  Convert the total number of lunar months to 
tithis by multiplying by 30. 
6)  Add the number of tithis elapsed up to the 
Second Waso Full Moon, i.e. 14, to get the total 
number of elapsed tithis, t. 
7)  Compute the avoman by the formula (t × 11 
+ 650)mod 703.

3
 

 

If the result is 0 it is replaced by 703.  The num-
ber 650 is an epoch constant, the tithi excess at 
the epoch being 650/703. 
 

Example: Compute the 2WFM avoman for 
the year 1242 in the Burmese era which had an 
intercalary month, number 7 in the 19-year cycle:  

 

1242 × 12 + 4 = 14908  
(14908 × 7)/228 = 457  
Total elapsed months 14908 + 457 = 15365  
Elapsed tithis (15365 × 30) + 14 = 460964  
(460964 × 11 + 650)mod 703 = 515, the 
2WFM avoman. 

 

Once the 2WFM avoman has been calculat-
ed for one of the intercalary years in the Metonic 
sequence it is easy to compute the 2WFM avo-
man for any subsequent intercalary year in the 
sequence by adding one of two numbers: 517 or 

259, both modulus 703.  The interval between 
two years in the intercalary sequence can either 
be two or three years.  In a two-year interval 
there are two normal years with twelve months 
plus one intercalary month.  Thus, 2 × 12 + 1 = 
25 months and 25 × 30 tithis = 750 tithis.  The 
excess (750 × 11)mod 703 = 517 is the avoman 
change.  As we consider a difference, the epoch 
constant will cancel. 
 

In a three-year interval there are 3 × 12 + 1 

= 37 months, where 37 × 30 tithis = 1110 tithis, 

and the excess (1110 × 11)mod 703 = 259 is the 

avoman change. 
 

The rule for inserting an intercalary day is 
this: if the 2WFM avoman of the intercalary year 
is larger than the previous 2WFM avoman, there 
will be an intercalary day.  If you take the case 
of a two-year interval it is easy to see that this 
statement is equivalent to saying that the prev-
ious 2WFM avoman lies in the interval [1, 186].  
If you add 517 to any number in this interval the 
result will be less than 703 and thus larger, if it is 
outside this interval, the sum will be larger than 
703 and by the modulus condition will be reduc-
ed by 703 and thus then be smaller than the 
original number.  In the same way for a three-
year interval, if the previous 2WFM avoman lies 
in the interval [1, 444], addition of 259 will result 
in a larger avoman. 
 

Example: The year 1242 was number seven 
(1242mod 19 = 7) in the intercalary cycle with 
the avoman equal to 515.  The previous in-
tercalary year, 1240, was the fifth in the intercal-
ary cycle and the distance between these years 
is two years.  Thus, the earlier year has a 2WFM 
of 515 – 517 = –2.  Add 703 to this result and 
we find the 2WFM avoman is 701.  The 2WFM 
avoman of the year 1242 is smaller than the pre-
vious 2WFM avoman, thus there is no day inter-
calated in the year 1242.  The next year with an 
intercalary month is 1245, number ten in the 
intercalary cycle.  As there are now three years 
between the previous intercalary year the avo-
man of year 1245 is 515 + 259 = 774.  As it is 
larger that 703 we subtract 703 and get 71.  This 
is smaller than 515, thus the year 1245 has also 
no intercalary day.  The next year in the inter-
calary sequence is 1248, number thirteen in the 
intercalary sequence.  Again, the distance in 
years is three years and the new avoman will be 
71 + 259 = 330.  As it is larger than the previous 
avoman the year 1248 will have an intercalary 
day. 
 

We can now calculate the mean number of 
intercalary days in a 19-year cycle.  There are 
always two two-year intervals in a Metonic inter-
calation cycle and five three-year intervals.  For 
a two-year interval the probability of an inter-
calary day is 186/703.  The corresponding prob-
ability for  a three-year interval is 444/703.  The 
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Table 2: Burmese intercalary years with intercalary days.  
 

 
 

total mean number of intercalary days in the cycle 
is then 2 × 186/703 + 5 × 444/703 = 2592/703 
solar days = 3.687055 days, exactly equal to 
the number of required days for synchronising 
the lunar calendar with the Moon and also the 
lunar calendar with the tropical year.  To this 
extent there is no need for a solar calendar. 
 

It is often seen stated that the intercalation 
of days follows a 57-year cycle requiring 11 in-
tercalary days.  It is true that very frequently 
there are 11 intercalary days in 57 years, but the 
canonical scheme presented above does not re-
sult in any recognisable pattern in which years 
the intercalary days should be inserted and can-
not be used as an intercalary rule.  Table 2 
shows 35 intercalary cycles, each consisting of 
three 19-year intercalary cycles (3 × 19 = 57) for 
a total of 1996 years.  The far-left column shows 
the year numbers in the intercalary cycle.  Years 
with an intercalary month that also have an in-
tercalary day are marked with a cross.  Every 
cycle except cycles number 15 and 31 has in-
deed 11 intercalary days, the exceptions having 
12 intercalary days, but there is no simple re-
peating pattern.  Mathematically the intercalation 
pattern repeats only after 703 cycles.  This 
range is unlikely to have been recognised. 

 

A question is how the Burmese chose the 
pattern of intercalation years in the Metonic 
cycle.  A possible answer could look like this: 
 

The number of intercalary months is given by m1 

= (7 × m) /228 where we use integer division and 
m is the number of elapsed normal months.  
Each time this expression increases by one unit, 
there will be a new intercalary month.  Now, 
suppose that we place ourselves at the end of 
Waso, month four.  We can now calculate for 
what years in a 19-year sequence there has been 
a new intercalary month at this moment.  Using 

m = cycle year·× 12 + 4 in the expression for m, 
we find the years that the above expression in-
creases by one for cycle years 3, 6, 8, 11, 14, 
16, 19, which means that the previous years, 2, 
5, 7, 10, 13, 15, 18 must have had an intercalary 
month.  This is exactly the intercalation pattern 
used in the Makaranta calendar.  The Arakan-
ese calendar inserts the intercalary month after 
Tagu, the first month.  Using m = cycle year × 
12 +1, we generate the intercalation pattern 2, 
5, 8, 10, 13, 16, 18, which is actually a variant 
found in the historical record (Chatterjee, 1966; 
Eade, 1995). 
 
1.3  The Solar Year 
 

The original sidereal solar calendar has 292207 
days in 800 solar years with a sidereal solar 
year of 365.25875 days.  The backbone of the 
solar calendar is the ahargana, in Burmese har-
agon or tawana, the number of elapsed days 
since the epoch plus the New Year‘s Day.  The 
Sanskrit term ahargana will be used in what fol-
lows.  The formula for the ahargana at the end 
of the day of the beginning of a Burmese year is 
the integer result of (year × 292207 + 373)/800.   
 

The number 373 is an epoch constant giving 
the mean age of the Sun in parts of 1/800

th
 of a 

day at the beginning of the epoch.  The final 
addition of one day brings the ahargana up to 
midnight on New Year‘s Day, the number of cur-
rent days from the epoch.   
 

The remainder of the division (year × 292207 
+ 373)/800 measures the age of the mean Sun 
on the beginning of the New Year‘s Day in 
units of 1/800

th
 of a day.  The 800-complement 

of this number is the part of the solar day that 
remains and is called the kyammat.  The 
kyammat decreases by 207 units from New Year 
to New Year and when it is 207 or less in value it 
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Table 3: The changing month intercalation scheme in Thandeikta.  
 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Burmese Year  x   x  x   x   x  x   x  

1201  x  x   x   x   x  x   x  

1217 x   x   x   x   x  x   x  

1228 x   x   x   x  x   x   x  

1263 x   x   x  x   x   x   x  

1317 x   x  x   x   x   x   x  

1328 x   x  x   x   x   x  x   

1344 x   x  x   x   x  x   x   

 
generates a solar leap year with 366 days.  Note 
that 207/800 = 0.25875 is the excess over 365 
days of the adopted sidereal solar year.  The 
ahargana is further used for calculation of the 
longitudes of the planets. 
 

The problem is that the lunar Metonic calen-
dar is not happily married with this sidereal solar 
calendar.  The sidereal solar year is 365.25875 
– 365.24667 = 0.01208 days longer than the 
mean lunar tropical year.  By the year 1100 in 
the Burmese Era the two calendars had drifted 
about 12 days apart and religious celebrations 
threatened to fall in the wrong season, very 
much the situation with the Western Julian cal-
endar where Easter moved away from the true 
vernal equinox because the Julian calendar year 
is a little too long relative to the true tropical 
solar year.   

 

The situation in Burma was worsened by a 
reform of the calendar, the Thandeikta (သံဒိဋ္) 
calendar, that uses the modern Sūryasiddhānta 
parameters for the Sun, 1577917828 days in 
432000 years that was introduced in practice 
around the year 1200 in the Burmese Era (CE 
1838).  This sidereal year is even longer than 
the previous sidereal year and the drift acceler-
ated.  The remedy was to start changing the 
intercalation pattern for the lunar months mak- 
ing them occur earlier.  This was done in several 
steps up to the present day.  See Table 3, where 
the crosses mark the years in the 19-year cycle 
that are intercalary.  The left column shows the 
Burmese years when the change was done.  
The corresponding Western year is the Burmese 
year increased by 638. 
 

Secondly, the rule for inserting intercalary 
days was changed several times and these 
changes completely destroyed the original beauty 
and consistency of the original system.  Today, 
there are no canonical rules for setting up future 
Burmese calendar dates, the intercalation being 
determined from time to time by a committee of 
calendarists.  A suggestion of a new computer 
algorithm for a reformed Myanmar calendar can 
be found on the Internet (Yan Naing Aye, 2013). 
 

The Arakanese and Makaranta calendars are 
unique among the Indian-influenced calendars 
in Southeast Asia in using a Metonic intercala-
tion pattern.  There is only one Indian canon that 
uses this scheme, the Romakasiddhānta (Neug-
ebauer and Pingree, 1970‒1971; Sastry, 1993; 

van der Waerden, 1988).  As the name indicates, 
this canon has Hellenistic origins.  Its epoch is 
CE 21 March 505 or Śaka 427.  The scheme for 
the computation of the excess tithis in these 
original Burmese calendars is exactly paralleled 
in the Romakasiddhānta.  It is tempting to assume 
that the Romakasiddhānta was a precursor to 
the Burmese calendar.  However, the presently 
known facts about the Romakasiddhānta are too 
scanty to draw any safe conclusions. 
 

In the later Thandeikta scheme the New Year 
ahargana, h0, is computed by 
 

h0 = [year – 1100 + (year – 1100)/193 + 
17742]/800 + 1,            (1) 
 

the New Year kyammat by 
 

k0 = 800 – [year – 1100 + (year – 1100)/193 + 
17742]/mod 800           (2) 
 

and the avoman by  
 

[11 × h0 + (year – 1100)/25 + 176]mod 692.     (3) 
 

In Burma there is sometimes used a 12-year 
cycle for years where the years are specified by 
the Sanskrit names for the lunar months. 

 
2  THAILAND, LAOS AND CAMBODIA 
 

2.1  The Sources 
 

The first description of the calendar in the re-
gions of Southeast Asia mainland outside Bur-
ma and Vietnam came to Europe with the return 
of Simone de la Loubère from a visit to Siam in 
CE 1687.  La Loubère (1642–1729) was a French 
diplomat and mathematician who led an em-
bassy to Siam (modern Thailand) on a mission 
instigated by the King Louis XIV of France.  On 
his return, at the request of the King he wrote a 
description of his travels, which were published 
in two volumes under the title Du Royaume de 
Siam (Loubère, 1689).  An English translation was 
published in London in 1693 as A New Historical 
Relation of the Kingdom of Siam.  In the second 
volume Loubère gives a detailed description of 
Siamese astronomical calculations (see Section 
6.1), with explanations added by the French 
chief astronomer Giovanni Cassini (1625‒1712).  
Cassini was both exasperated and impressed by 
the Siamese methods of calculation: 
 

This method is extraordinary.  Tables are not 
used; but only addition, subtraction, multipli-
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cation, & division of certain numbers, for 
which one at first cannot see the basis, nor 
how they are related. (Loubère, 1689: 142; 
our English translation). 

 

Loubère (1689: 202‒203) also gives equiva-
lences between four Siamese and Western dates:   
 

 24 June 1687 = 1 waning, month 8 (Ashada) 
2231 (Buddhasakarat era, inclusive reckon-
ing) 

 20 October 1687 = 15 waxing, month 11 
(Asvina) 

 11 December 1687 = 8 waxing, month 1 
(Margasirsha)  

 22 December 1687 = 3 waning, month 1 
(Margasirsha) 

 

The dates are lunar dates giving the age of the 
Moon.  The first two reveal interesting informa-
tion: the distance between them is 118 days, 
precisely equal to four lunar months, but the dif-
ference in months is only three (11–8).  The 
conclusion (also made by Cassini, who demon-
strated acuity in his analysis) is that there must 
have been an intercalary month in between.  In 
fact, according to the canonical Thai calendrical 
rules this year should indeed be intercalary. 
 

The second source of the calendrical  
schemes of this region came much later with the 
publication of Astronomie Cambodgienne (Far-
aut, 1910) by the French engineer Felix Gaspar 
Faraut (1846‒1911).  Faraut visited Cambodia 
in 1880‒1881 and became Councillor and Chief 
Engineer of King Norodom I (1834‒1904).  Dur-
ing his stay he also attended a course on Khmer 
astronomy by the Royal Astrologer, Daung Okgna 
Hora Thpdey Chang Vang, on the methods that 
the latter employed to determine the positions of 
the planets and to construct the luni-solar cal-
endar.  Faraut had a difficult task, being expos-
ed to Khmer technical terminology that had no 
self-explanatory meaning and to a set of mech-
anical mathematical operations that had no ob-
vious theoretical basis, just a set of procedures.  
Also, when he returned to France in 1884 and 
planned to publish his results, he found that all 
of his study notes from the course had disap-
peared.  Luckily, two years later he found them, 
and eventually they were published.  Despite its 
many errors and misunderstandings, Faraut‘s 
book is our main source on the workings of the 
old calendar and astronomy of Thailand, Cambo-
dia and Laos.  These workings have been the 
basis of the computer application SEAC (South-
east Asian Calendars) developed by Eade and 
Gislén that also handles the Burmese calendars. 
 

The third source of information is the monu-
mental astronomical/astrological manual in Thai 
by Luang Wisandarunkorn (1997).  Most of the 
book deals with astrology, but there are model 
calculations of planetary longitudes and eclipses 
that  in  many cases complement, vindicate and 

illuminate Faraut‘s descriptions.  
 

The calendar in Laos has been dealt with in 
detail by Prince Phetsarath of Laos (see Phet-
sarath 1956; 1973), and there is an extensive 
numerical treatment by Dupertuis (1981). 
 
2.2  The Calendar 
 

The epoch of the Thai Chulasakarat era (small 
era) is the same as for the Burmese calendars, 
namely CE 22 March 638.  But there are other 
eras in use in the region: the Mahasakarat era 
(large era), identical with the Śaka Era and with 
epoch CE 17 March 78; the Buddhasakarat era 
with epoch 11 March 544 BCE, the day Buddha 
attained parinwāna or Nirvana; and the Anchan-
sakarat era, with epoch 10 March 691 BCE.  
This last era, which is not often encountered, 
appears to have been a device to deal with 
events before the Buddha era, thus avoiding 
negative reckoning.  These eras will not be much 
studied here; their calendrical schemes are ident-
ical with that of the Chulasakarat era except for 
having different epoch constants.  The basic 
machinery for the calendrical and astronomical 
calculations derive from the Indian Sūryasidd-
hānta albeit in a slightly simplified version.  
 

The Thai lunar months (Table 4), like the Bur-
mese ones, have alternating 29 and 30 days and 
there is a lunar intercalary month, adhikamat. Un-
like Indian reckoning in which extra lunar months 
were observed as they fell due, the adhikamat 
was confined to a second Ashada (Wazo in Bur-
ma), which had 30 days.  There is also occasion-
ally an intercalary day, adhikawan, inserted at the 
end of the previous month Jyestha.  A distinction 
between the Thai and Burmese systems, one 
with more dislocating effect than one might have 
imagined, is that the Burmese mode says that a 
year with an extra day can occur only in a year 
that also has an extra month, whereas the Thai 
system says that a year with an extra month can-
not also have an extra day. 
 
 

The Thai names of the lunar months are al-
most identical with the Pali names.  In what fol-
lows, we will refer to the months by their Sans-
krit names but without the diacritics.  
 

In most Thai calendrical records, the month 
is referred to by a number instead of by its name 
of which there are three styles.  Table 5 shows 
the equivalences used.  Intercalary months are 
referred to by doubling the month number of in-
tercalated month.  So, for instance, an inter-
calated Ashada in the Central/Sukhothai system 
is written 88.  The Cambodian names are the 
less common alternatives for the Sanskrit ones 
(Eade, 1995). 
 

The calculation of the solar and lunar para- 
meters in La Loubère is somewhat different from 
that in Faraut (1910) and Wisandarunkorn (1997) 
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Table 4: Lunar month names.  
 

 

and is based on the lunar calendar.  It seems to 
be related to an earlier calendrical epoch in Siam 
and is in many ways similar to the correspond-
ing Burmese calculation.  The era used in La 
Loubère‘s calculation is the Chulasakarat era 
with elapsed years.  Given the year y, the elaps-
ed lunar months m of the year, and the elapsed 
lunar days of the month or tithis, t, the procedure 
is as follows: 
 

1) Compute the number of elapsed normal lunar 
months from m0 = 12 × y + m. 

2) Compute the number of intercalary months 
m1 = (m0 × 7)/228.  This assumes a Metonic 
calculation that is not, as will be seen, the case 
for Siam.  The information in La Loubère shows 
that the Siamese year 1049, corresponding to 
CE 1687, was a year with an intercalary month 
which it was not in the Burmese calendar with 
Metonic intercalation. 

3) Compute the total number of elapsed tithis    
T = 30 × (m0 + m1) + t. 

4) Compute the avoman: a = (t × 11 + 650)mod 
703. 
5) Compute the ahargana: h = T – (T × 11 + 
650)/703.  The ahargana (lit. ‗collection of days‘) 
is the number of elapsed solar days since the 
epoch.  The relation uses the fact that a tithi cor-
responds to 692/703 of a solar day. 
 

Once the avoman and ahargana  are calcu-
lated they are used in the same way as in Far-
aut (for Cambodia) and Wisandarunkorn (for Thai-
land) to calculate the longitudes of the Sun and 
the Moon and the planets. 

 
Table 5: Month equivalences.  

 

Sanskrit Cambodia 
Central/ 

Sukhothai 
Keng 
Tung 

Chiang 
Mai 

Caitra Magha 5 6 7 

Vaisakha Madhava 6 7 8 

Jyestha Sukra 7 8 9 

Ashadha Suci 8 9 10 

Sravana Nabhas 9 10 11 

Bhadrapada Nabas 10 11 12 

Asvina Isha 11 12 1 

Karttika Urja 12 1 2 

Margasirsha Sahas 1 2 3 

Pausha Sahasya 2 3 4 

The calculations for the solar calendar in Far-
aut (1910) and Wisandarunkorn (1997) are ident-
ical to the early Burmese calendars, as is evi-
dent by their arriving at identical results (Eade, 
1995).  There is the same rule for a solar leap 
year—that if the kyammat (or in Thai the kam-
macabala, see below) is less than or equal to 
207, the solar year is a leap year with 366 days.  
However, the rules for intercalating the lunar 
months are different, more complex, and not 
Metonic.  We will use the suryayatra rules that 
seem to be more reliable (Eade, 2000).  The 
solar new year occurs on the day when the 
mean solar sidereal longitude is zero, i.e. when 
the mean Sun enters the first zodiacal sign.  This 
is in Thai thalœngsok.  The true Sun has zero 
longitude about two days earlier, the songkran, 
and the interval between the two is used for cel-
ebration.  The solar new year occurs in the lunar 
month of Caitra or sometimes in the following 
month Vaisakha.  The basic rule is that the solar 
year can never start earlier than 6 Caitra or later 
than 5 Vaisakha, the following lunar month, 
although this latter date may, by a subsidiary 
rule, be pushed to 6 Vaisakha.  As the normal 
lunar year is 11 or 12 days shorter than the solar 
year (depending on whether the previous solar 
year is a leap year or not) the solar new year will 
start the corresponding number of days later in 
the lunar calendar if there is no intercalary 
month.  This means that if the start of the lunar 
year occurs in the interval later than 24 Caitra 
and before or on 6 Vaisakha there is a need for 
an intercalary lunar month.  If a lunar year starts 
on 24 Caitra and the next year would start on 6 
Vaisakha there is also an intercalary year.   

 

There is an exception to these rules—that if 
a lunar year starts on 25 Caitra and the next 
year would start on 5 Vaisakha there is no in- 
tercalation, as it would sometimes generate two 
years in sequence with intercalary months.  These 
rules effectively lock the lunar calendar to the 
sidereal solar one and in this way avoid the prob-
lems that the Burmese calendar has. 
 

It is possible to compute the average fre-
quency of the intercalation of months using the 

Thai  Days Lao Khmer Pali  Sanskrit  

Chittra  (จติร )  29 Chit Chaet Citta  Caitra 

Wisakha  (วสิาข)   30 Wisakha Vesak Visakha  Vaiśākha 

Chettha  (เชษฐ)  29/30  Set Jais Jeṭṭha  Jyeṣṭa 

Asalha  (อาสาฬห)  30 Asalaha Ashad Āsāḷha  Āṣādha 

Sawana  (สาวน)  29 Sawana Srap Sāvana  Śravaṇa 

Phatrabot  (ภัทรบท)   30 Phatthrabot Phutrobot Poṭṭhapāda  Bhādrapada 

Atsawayut (อัศวยชุ) 29 Atsawayut Asuj Assuayuja  Aśvina 

Kattika  (กัตตกิา)  30 Karttika Kadhek Kattikā  Kārttika 

Mikasira  (มคิสริ)   29 Mikhasina Mekasay Māgasira  Mrgaśīrṣa 

Putsa  (ปสุส)  30 Putsa Bos Phussa  Pauṣa 

Makha  (มาฆ)  29 Mat Meak Māgha  Māgha 

Phakkhun  (ผัคคณุ)  30 Phakkhun Phagaun Phagguṇa  Phālguna 
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fact that the intercalation rules keep the solar 
and lunar calendars in step.  
 

Nineteen sidereal solar years have 19 × 
365.25875 = 6939.91625 days.  This corresponds 
to 6939.91625/29.53058321 = 235.0077613 syn-
odic months.  Nineteen years each with twelve 
synodic months contain 19 × 12 = 228 months.  
Thus, we have on average 235.0077613–228 = 
7.0077613 intercalary lunar months in a 19-year 
period in order to keep the solar and lunar cal-
endars aligned.  This is very close to the Met-
onic intercalation frequency, though the intercal-
ation pattern will not be fixed but will recede slow-
ly within a 19-year cycle in a way similar to the 
recession of intercalary cyclic years in the Bur-
mese Thandeikta calendar.  
 

The rule for the intercalation of a day in the 
lunar calendar uses the New Year avoman.  This 
is computed using the New Year ahargana, h0, 
computed as in the Makaranta calendar by 
 

h0 = (year × 292207 + 373) /800 + 1         (4) 
 

where integer arithmetic is used.  The New Year 
avoman, a0, is then computed by 
 

a0 = (h0 × 11 + 650)mod 692          (5) 
 

If the avoman is equal to zero it is changed to 
692.  The remainder of the division 
 

(year × 292207 + 373)/800          (6) 
 

is the excess time, expressed in 1/800
th
 of a day 

or the ‗age‘ of the Sun at the end of the New 
Year day.  The quantity 800 minus the remainder 
is the kammacabala corresponding to the Bur-
mese kyammat.  If the kammacabala is less than 
or equal to 207 the solar year is a leap year with 
366 days. 
 

Example: Compute the ahargana and the  
New Year kammacabala of the Chulasakarat year 
1238: 
 

(1238 × 292207 + 373)/800 = 452190 and re-
mainder 639.  The ahargana is 452190 + 1 = 
452191 and the kammacabala = 800 – 639 = 
161.  As this is less than or equal to 207, the 
year is a solar leap year. 
 

Example: Compute the New Year avoman 
for Chulasakarat 1238: 
 

(452191 × 11 + 650)/mod 692 = 655.  The 
avoman is 655. 
 

The avoman increases by 11 units each 
day.  During a normal solar year, the New Year 
avoman increases by (365 × 11)mod 692 = 555, 
during a solar leap year by 555 + 11 = 566.  The 
distance of these numbers from 692 is 137 and 
126 respectively.  An increase of 555 is, in 
modular language, the same as a decrease of 
137.  If the New Year avoman of a normal year 
is equal to 137 or less, it means that the lunar 
calendar needs an intercalary day; for a leap year 
there will be an intercalary day if the New Year 

avoman is equal to 126 or less.  However, this 
rule can mean that an intercalary day falls in a 
lunar year with an intercalary month.  This has 
to be avoided and there are quite complicated 
rules on how to move the intercalary day to one 
of the adjacent years.

4
  This is a step where it is 

quite probable that in practice other rules were 
used, for instance by always moving the day to 
the following or always to the preceding year.  
This expedient would in the long run have no 
lasting effect but would make the calendar some-
times deviate a day from the canonical calendar. 
 

We can also calculate the frequency of day 
intercalation, irrespective of the precise insertion 
rules.  The probability of having a leap year is 
207/800, the probability of a normal year (800‒
207)/800 = 593/800.  The probability of an inter-
calary day is 126/692 and 137/692 respectively. 
Thus, the joint probability is: 
 

[(126/692 × 207) /800] + [137/(692 × 593)/800] = 
0.1938638 
 

or on average 19 × 0.1938638 = 3.6834122 
days in 19 years.  We have the relation 
 

19 sidereal solar years = 19 × 365.25875 = 
6939.91625 days 
 

19 normal lunar years with 354 days plus on 
average 7.0077613 intercalary years with 30 
days give 
 

(19 × 354) + (7.0077613 × 30) = 6936.232839 
days. 
 

Add to this the 3.6834122 days from the day 
intercalation and we get 6939.91625—exactly 
matching the mean number of days in a 19-year 
year period.  By this means the Thai intercala-
tion scheme achieves a perfect synchronisation 
of the sidereal solar and lunar calendars and 
with the Moon. 
 

There are a few other quantities that are us-
ed in calendrical calculations and are often spec-
ified in the records.  The uccabala relates to the 
position of the Moon‘s apogee.  It is calculated 
using the formula 
 

uccabala = (ahargana + 2611)mod 3232       (7) 
 

where 2611 is an epoch constant.  The number 
3232 is the period of rotation in days for the 
apogee. 
 

The masaken counts the number of elapsed 
lunar months.  First the number of tithis is com-
puted: a solar day is equal to 703/692 of a tithi 
and the tithi was 650/692 at the epoch.  As each 
lunar month is equal to 30 tithis, the number of 
lunar months is simply the tithis divided by 30. 

 

masaken = [(ahargana × 703 + 650)/692]/30   (8) 
 

The tithis within the lunar month is computed by 
 

[(ahargana × 703 + 650)/692]mod 30         (9) 
 

Example: Compute the uccabala, masaken, 
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and tithi for New Year 1238, ahargana 452191. 
 

(452191 + 2611)mod 3232 = 2322, the uccabala. 
(452191 × 703 + 650)/692 = 459379 
459379/30 = 15312, the number of elapsed 
lunar months since the epoch. 
459379mod 30 = 19, the tithi. 
 

Since the system was implemented locally 
over a wide area for centuries, as is evidenced 
by monastic inscriptions, it may be concluded that 
the numbers that caused the system to function 
from year to year were easily memorised and re-
liably passed from generation to generation. 
 
2.3  The Sexagesimal Calendar 
 

Another calendar component used in Northern 
Thailand,  Laos, and also in Burma is the cyclic 
sexagesimal calendar.  In Northern Thailand it is 
used for both days and years, in Burma only 
with a duodecimal cycle for years.  It is built from 
the combination of a decimal with a duodecimal 
cycle but such that only odd or even elements 

 
Table 6: Names of the Watches.  

 

Time Thai Lao 

06:00‒07:30 tut chao tuttang 
07:30‒09:00 klong ngai ngay 

09:00‒10:30 træ thiang te kaeu thieng 
10:30‒12:00 thiang thieng 
12:00‒13:30 tut chai tutsay 
13:30‒15:00 klong kham leng 
15:00‒16:30 træ kham thè kaeu kham 
16:30‒18:00 [phat] kham phat lam 

18:00‒19:30 tut dük tuttang 
19:30‒21:00 klong dük deuk 
21:00‒22:30 træ dük thè kaeu thieng 
22:30‒00:00 dük thieng khun 
00:00‒01:30 tut rung tutsay 
01:30‒03:00 klong rung khua 

03:00‒04:30 træ rung thè kaeu hung 
04:30‒06:00 rung phat lan 

 
are paired.  This will give precisely sixty different 
combinations. The Thai names of the decimal 
cycle items are: kap, dap, raway, moeng, poek, 
kat, kot, ruang, tao and ka. 
 

The duodecimal series is: cai, pao, yi, mao, 
si, sai, sanga, met, san, rao, set and kai. 
 

Sometimes also the Thai animal names are 
given: Chuat, Chalu, Khan, Tho, Marong, Ma-
seng, Mamia, Mamae, Wok, Rakaa, Cho, Kun. 
 

These names are the same as in the Chin-
ese duodecimal series: rat, ox, tiger, rabbit, drag-
on, snake, horse, goat, donkey, rooster, dog and 
pig. 
 

The sexagesimal day cycle is often combin- 
ed with the seven-day cycle of weekdays to gen-
erate a larger 420-day cycle. 

 
2.4  Time Measure 
 

Time of the day is sometimes measured in 
watches where the period from one dawn to the 

next is divided into eight day- and eight night-
watches, giving 90 minutes for each (see Table 
6).  By South-east Asia reckoning the subunits 
of time are the pada/bat of six minutes, the nadi, 
or sixtieth of a day (24 hours), 24 minutes, and 
the nalika of 60 minutes.  

 
2.5  King Rama IV’s Lunar Calendar 
 

A special Thai lunar calendar is the Pakkhakhan-

ana (ปักขคณนา, fortnight calculation) calendar 

(Chunpongtong, 2008) invented by the Thai King 

Rama IV or Mongkut (CE 1804‒1868; Saibejra, 

2006).  He noted that the phases of the Moon in 

the Thai lunisolar calendar were sometimes dis-

placed by up to two days relative to the true Moon 

and was concerned that the Buddhist sabbath 

days would not be celebrated at the stipulated 

times.  The Pakkhakhanana calendar, although 

using the mean Moon, gives phases of the Moon 

that are much closer to the real Moon than the 

standard Thai calendar.   
 

The calendar uses a board with five sets of 

rows of Khmer letters, ម (M, for Maha or big) 

and ច (C, for Chula, small) and with pegs to 

mark the settings (see Figure 1a).  Figure 1b shows 

the schematic layout for 11 February 2019, 

Magha 7 waxing 1380, Julian Day 2458526.  

The setting in the second figure is not the same 

as in the first one.  The scheme is based on fort-

nights. i.e. the waxing and waning parts of a 

lunar month that each one can have either 14 or 

15 days (whereas the standard calendar always 

has 15 days, expressed as 14 waxing days and 

full Moon day). 
 

The letter in a specific set of rows deter-
mines which row, M or C, to use in the next set 
of two rows below it.  The bottom rows determine 
whether the fortnight has 15 (M) or 14 (C) days.  
These rows are not shown on the Pakkhakhan-
ana board.  For each day, the number in the 
bottom row is stepped up one step.  As the num-
ber reaches 14 or 15, the counting starts again 
from 1 and the position in the set of rows above 
is stepped up by one to the right.  As the steps 
reach the end of the row, the position in the set 
of two rows above is stepped one step to the 
right and so on.  All the time the choice of the 
row where to begin within the two set of rows is 
determined by the letter in the set above.  Full 
Moons and New Moons occur when the number 
in the lowest rows is fourteen or fifteen, quarter 
Moons when it is eight.  The scheme is based  
on a mean lunar half-month of 14.765297 days.  
The first day of the calendar is Saturday 28 Jan-
uary 1736, Julian Day 2355148 when the Moon 
was 1 waning.  

 

The procedure to compute the setting pat-
tern of the board is as follows: 
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1) Subtract 2355147 from the Julian Day. 
2) Divide the result by 16168, increase the 

quotient by 1, keep the remainder. 
3) Divide the remainder by 1447, increase the 

quotient by 1, keep the new remainder. 
4) Divide the remainder by 251, increase the 

quotient by 1, keep the new remainder. 
5) Divide the remainder by 59, increase the 

quotient by 1, keep the new remainder. 
6) Divide the remainder by 15, increase the 

quotient by 1, keep the new remainder 
7) The remainder is the day number in the half-

month. 
 

The reason for the numbers 15, 59, 251, 1447, 
and 16168 is that they are chosen to be suc-
cessively more close approximations of days of 
an integer number of half-months.  They corres-
pond respectively to 1, 4, 17, 98, and 1095 half-
months.  
 

Example: 11 February 2019, Julian Day 
2458526. 
 

1) 2458526 – 2355147 = 103379 
2) 103379/16168 = 6:6371, 6 + 1 = 7 
3) 6371/1447 = 4:583, 4 + 1 = 5 
4) 583/251 = 2:81, 2 + 1 = 3 
5) 81/59 = 1:22, 1 + 1 = 2  
6) 22/15 = 1:7, 1 + 1 = 2 
 

The board setting pattern is 7:5:3:2:2:7 as shown 
in Figure 1b.  The rule will sometimes give a set-
ting that needs to be adjusted.

5
  The number of 

elapsed half-months is computed from this set-
ting by (7–1) × 1095 + (5–1) × 98 + (3–1) × 17 + 
(2–1) × 4 + 2 = 7002.  As the number of elapsed 
half-months is even, the Moon will be waxing 7.  
 

The scheme generates a lunar calendar with 
a more even distributions of half-months of 14 
days than the standard Thai luni-solar calendar 
and is closer to the real Moon phases.  The 
calendar pattern repeats after 289577 days.  A 
test run with a computer implementation of the 
calendar from CE 1850 to 2000 shows that the 
maximum deviation from the mean astronomical 
Moon only is ±0.5 days.  At present the calendar 
is only used by Dhammayuttika Nikaya, an order 
of the Theravada Buddhism in Thailand. 

 
3  CONCLUDING REMARKS 
 

The original Burmese calendars are unique in 
Southeast Asia in using a Metonic intercalation.  
Also, the lack of connection between the lunar 
and solar calendars is specific.  It would be 
highly interesting to investigate the origins of 
these calendars once more information becomes 
available.  One possibility is a connection with 
the Indian Romakasiddhānta with which they 
share many similarities (Gislén, 2019).  The later 
Thandeikta calendar tries to remedy the dis-
crepancy between the lunar and solar calendars 
by modifying the intercalation scheme. 

The Thai calendar achieves a perfect syn-
chronization between the lunar and solar calen-
dars.  However,  the use of a sidereal solar cal-
endar means that it will drift slowly in relation to 
the real seasons.  The solar New Year, originally 
chosen to start at the vernal equinox at the 
epoch in CE 638, now starts about a month later. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1a: A Pakkhakhanana board. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1b: The Pakkhakhanana board, schematic layout. 

 
It is very important to realise that there are 

canonical calendar schemes that are based on 
sound astronomical facts and constructed by 
highly educated and skilled experts in the field.  
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The canonical rules for computing the calendar 
were codified in a set of inherited rules, much 
like a computer program, which if followed, gen-
erated the desired result.  This procedure did 
not require that the person doing the calculation 
had any understanding of the underlying astro-
nomical model.  This way of working has some 
obvious advantages: the many horoscope calcu-
lations recorded in the temples could be done by 
unskilled monks.  The drawback is that once a 
rule was misunderstood or distorted, the error 
could propagate without possible correction for 
all future time. 
 

Such distortions, however, are quite rare 
considering that this system has worked for the 
order of a millennium.  Another more frequent 
issue could be that there were sometimes in the 
practical application of the rules shortcuts or 
simplifications made, of which there is some 
evidence, or intercalation changes made at the 
whim of some ruler.  When a satisfactory pro-
cedure has been established that accurately and 
consistently replicates the data to be found in 
the Thai inscriptions, it is something of an ag-
gravation that there is nonetheless some ten-
dency for the data to represent a one-day dif-
ference from one‘s expectation.  One takes into 
account here that there are three kinds of lunar 
year: a normal one of 354 days, and two others 
in which either an extra day (355 days) or an 
extra month (384 days) is added as a means of 
causing the lunar years to keep pace with the 
solar years.  In the case where an extra day is 
required there were some complicated theoreti-
cal rules set up to determine which years should 
receive the extra day—a matter on which even 
today there is a discussion.  One consequently 
suspects that the one-day differences to be met 
with are the result not of minor computation 
errors, but of a settled difference in procedure.  
 

The very complicated calculations of the true 

longitudes of the planets for the horoscopes 

were sometimes done at some fixed time inter-

vals and not always on the day as they should 

have been.  Corrections for calculating true 

longitude from mean longitude were sometimes 

added instead of subtracted or vice versa.  Also, 

in some cases there have been errors in the 

procedure of transferring the computed calendri-

cal data to the actual written record.  The digits 

for one (၁), eight (ဂ), and zero (ဝ) are very 

similar in Burmese as are four (๔) and five (๕) 

in Thai.  Any small defect could easily change 

one digit to the other.  This means that when 

comparing the actual calendrical field records, 

the fact that some numerical information devi-

ates from what is expected from a canonical 

calculation does not necessarily mean that the 

record or the calendar is wrong.  It is better to 

characterise it as different.  Luckily many of the 

records contain redundant calendrical data mak-

ing it possible to spot such deviations. 
 

Another source of apparent error is that the 
astronomic day starts at midnight but the civil 
day at sunrise or for villagers, ‗when they could 
see lines in the palm of their hand‘ (Diller, 2000).  
This means that depending on the convention 
an event could be assigned to one of two diff-
erent days and weekdays if the time of the event 
occurred in the interval between midnight and 
sunrise. 

 
4  NOTES 
 

1.  This is the second paper in a series that 
reviews the traditional calendars of South-
east Asia.  The first paper (Gislén and Eade, 
2019) provided an introduction to the series. 

2.  For specialist astronomical terms used in this 
paper see the Glossary in Section 6.3. 

3.  The Burmese and Thai astronomical and 
calendrical calculations are based on inte-
ger arithmetic.  Thus, the division of two 
numbers, for instance 10/3 gives the result 3 
with a remainder of 1.  In this paper we use 
the mathematical modulus function where 
10 mod 3 means the remainder of 10 
divided by 3.  Actually, we use a slightly 
different definition: if the remainder is 0 it is 
replaced by the divisor, 20 mod 5 is then 5, 
not 0. 

4.   For Thai rules for intercalary days see Sec-
tion 6.2 below. 

5.  For example, starting with 98956, the rule 
gives the setting 7:2:2:5:1:14.  However, there 
are only four columns for the fourth item and 
the number 5 must be adjusted to 4.  This 
will add 59 to the remainder and give the 
correct setting 7:2:2:4:5:13. 
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6  APPENDICES 
 

6.1  Extract from La Loubère’s Du Royaume 
      de Siam 
 

Régles pour  trouver le  lieu  du  Soleil  &  de  la 
Lune au temps de la naissance de quelqu‘un. 
 
I.  
 

1. Posez l‘Ere. 
2. Soustrayez l‘âge de la personne de l‘Ere, 
vous aurez l‘âge de la naissance. 
3. Multipliez‘la par 12. 
4. Ajoûtez-y le nombre des mois de l‘année 
courante: & pour cela, si l‘année courante est 
Attikamaat, c‘est-à-dire, si elle a 13 mois de la 
Lune, vous commencerez à compter par le 5 
mois; que si elle n‘est point Attikamaat, vous 
commencerez à compter par le 6 mois. 

5. Multipliez par 7 le nombre trouvé art. 4. 
6. Divisez la somme par 228. 
7. Joignez le quotient da la division au nombre 
trouvé art. 4; cela vous donnera le Maasaken 
(cést‘à-dire, le nombre des mois) que vous gard-
erez. 

 
II. 
 

1. Posez la Maasaken. 
2. Multipliez par 30. 
3. Joignez-y les jours du mois courant. 
4. Multipliez par 11. 
5. Ajoûtez-y encore le nombre de 650. 
6. Divisez par 703. 
7. Gardez le numerateur que vous apellerez 
Anamaan. 
8. Prenez le quotient de la fraction trouvé art 6, 
& le soustrayez du nombre art. 3: le reste sera 
l‘horoconne (c‘est-à-dire, le nombre des jours de 
l‘Ere) que vous garderez. 

 
III. 
 

1. Posez l‘horoconne. 
2. Divisez par 7. 
3. Le numérateur de la fraction est le jour de la 
semaine. Nota, Que le premier jour de la se-
maine est le Dimanche. 
 

IV. 
 

1. Posez l‘horoconne. 
2. Multiplez-le par 800. 
3. Soustrayez-en 373. 
4. Divisez-le par 292207. 
5 Le quotient sera l‘Ere, & le numérateur de la 
fraction sera le Krommethiapponne, que vous 
garderez. 
 

V.  
 

1. Posez le Krommethiapponne. 
2. Soustrayez-en  l‘Ere. 
3. Divisez le reste par 2. 
4. Negligeant la fraction, soustrayez 2 du quot-
ient. 
5. Divisez le reste par 7: la fraction vous don-
nera le jour de la semaine. 
Nota, Que quand je diray la fraction, je n‘entends 
parler que du Numérateur. 
 

VI.  
 

1. Horoconne. 
2. Soustrayez-en 621 [or add 3232 – 621 = 2611]  
3. Divisez le reste par 3232.  
4. La fraction s‘appelle Outhiapponne, que vous 
garderez. 
 

Si vous voulez avoir le jour de la semain 
par, l‘ Outhiapponne, prenez le quotient de la 
division susfaite; multiplies-le par 5; puis joig-
nez.le a l‘ Outhiapponne; puis soustrayez-en 2 
jours; divisiez par 7, la fraction marquera le jour.  
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Tout ce que dessus s‘appelle Poulasouriat, 
comme qui diroit la force du Soleil. 

 
VII. 
 

1. Posez le Krommethiapponne. 
2. Divisez-le par 24350. 
3. Gardez le quoirient, qui sera le Raasi, c‘est à-
dire, le Signe où sera le Soleil. 
4. Posez la fraction de la division susdite, & la 
divisez par 811. 
5. Le quotient de la division sera le Ongsaa, 
c‘est à-dire, le degré où sera le Soleil. 
6. Posez la fraction de cette division, & la 
divisez par 14. 
7. Le quotient sera le Libedaa, c‘est-à-dire, la 
minute. 
8. Soustrayer 3 du Libedaa. 
9. Mettez ce qui est au Libedaa au dessus de 
l’Ongsaa, & l’Ongsaa au dessus du Raasi: cela 
fre une figure qui s‘appellera le Matteniomme du 
Solelei que vous garderez: Je croy que c‘est 
locus medius Solis. 
 
Sections VIII and IX treat the calculations of the 
true longitude of the Sun. 

 
X.  Pour la Lune pour trouver le matteiomme la 
Lune. 
 

1. Posez l‘anamaan. 
2. Divisez-le par 25. 
3. Mépriez la fraction, & joignez le quotient avac 
l’anamaan. 
4. Divisez le tout par 60 le quotient sera ongsaa 
la fraction sera libedaa, & vous mettrez un 0 au 
rasi. 
5. Posez autant de jours que vous en avez mis 
cy-dessus au mois courant sect. 2. II.3. 
6. Multiplez ce nombre par 12. 
7. Divisez le tout par 30, le quotient, mettez-le 
au rasi de la figure précedente qui a un 0 au 
rasi, & la fraction joignez-le à l‘ongsaa de la 
figure. 
8. Joignez toute cette figure au mateiomme du 
Soleil. 
9. Soustrayez 40 du libedaa.  Que si cela ne ce 
peut, vous tirez 1 du ongsa qui vaudra 60 ibedaa. 
10. Ce qui restera dans la figure est le matteiomme 
de la Lune cherché. 

 
6.2  Thai Rules for Intercalary Days 
 

The rules for the insertion of intercalary days 
ensure that the flow of weekdays is uninter-
rupted.  The rules as given in Faraut (1910) are 
very difficult to understand and to apply in prac-
tice.  Below is a simpler equivalent scheme in 
which three basic pieces of information are 
needed: 
 

1) The type of year: normal, year with inter-
calary day, year with intercalary month and year 
with both intercalary day and month, below 

denoted A, B, C, and BC respectively.  Years 
BC have a collision between intercalary day and 
month must be adjusted in the Thai scheme, 
moving the intercalary day to one of the adja-
cent normal years.  The type of year can be 
calculated by using the rules outlined in this 
paper. 
2)  The solar New Year weekday.  This is easily 
computed from the solar New Year ahargana 
(h0) by h0mod 7 where 0 = Saturday, 1 = Sun-
day, and so on. 
3)  The (preliminary) lunar date of the solar new 
year.  Using the New year ahargana, h0, the 
number of elapsed tithis, t0, is computed by the 
following formula: 
 

t0 = (h0 × 703 + 650)/693        (10)  

 

Then the tithi of the solar New Year is given by 
t1 = t0mod 30.  If t1 < 6 the date will be in 
Vaisakha, the second lunar month; otherwise in 
Caitra, the first lunar month. t1 = 0 is replaced by 
t1 = 1 (Vaisakha).  (A very rare exception is that 
if the avoman is equal to 692, t1 should be 
diminished by one.).  

 

Counting backwards from the solar New 
Year weekday it is now easy to find the week-
day, W, of 1 Caitra , the beginning of the lunar 
year.  Depending on the type of year the week-
day of the start of the next lunar year, Wnext can 
be calculated: 
 

1) For a normal year by (W + 4)mod 7, (354mod 
7 = 4). 
2) For a year with an intercalary day by (W + 
5)mod 7, (355mod 7 = 5). 
3) For a year with an intercalary month (by (W + 
6)mod 7, (384mod 7 = 6).  A year with both an 
intercalary day and month is treated as one with 
only an intercalary month, the intercalary day not 
being inserted but kept in waiting. 

 

As an example, we look at a sequence of 
the years 20–39 in the Chulasakarat era and get 
Table 6. 
 

The requirement for an uninterrupted flow of 
weekdays is that Wnext of any year should be 
equal to W of the following year.  In year 22   
and 38 we need to move the whole lunar year  
back one day in order to achieve this.  This will    
also cause the solar new year date to move   
one day forward in the lunar calendar.  It is call- 
ed ―l’exception One‖ by Faraut (1910: 121).  For 
year 22 this shows a case when the solar year 
will start on 6 Vaisakha, the date being pushed 
from 5 Vaisakha. 
 

There are two instances of intercalary years, 
30 and 35, where it is necessary to move the 
extra day to one of the adjacent years.  For year 
30 it is seen that by increasing Wnext in the prev-
ious year by one unit and thus making the year 
one day longer and moving the part of the lunar 
year from 1 Waso to the end of the year on step 
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                     Table 6: Intercalary day allocation.      Table 7: Intercalary vatriant allocation. 

 
forward, the extra day can fit into that year as an 
intercalary day 30 in the month of Nayon and 
the flow of weekdays will be restored.   

 

For year 35 the following year could start 
one day earlier making room for the extra day 
and again restore the flow of weekdays.  This 
will move the part of the lunar year from the start 
to the end of the third month, Nayon, where the 
extra day will be inserted and thus also move 
the lunar date of the solar new year one day 
forward in the lunar calendar.   

 

Note, however, that the extra day could also 
have been accommodated in the year following 
year 30 by changing W of year 31 from 6 to 5 
and moving the W and Wnext of year 30 one step 
down and the solar new year lunar date of that 
year one step up (Table 7).  This could imple-
ment an alternative rule of always inserting the 
intercalary day in the following year.  In a similar 
way the extra day in year 35 can be inserted in 
the previous year. These are possible solutions 
of the intercalation problem but require more 
shifts. 
 
6.3  Glossary 
 

adhikamasa  An indication as to whether or not 
a given year has an intercalary lunar month in it.  
Intercalary months are used to ensure that the 
lunar calendar keeps in step with the solar one.  

In Thai it is adhikamat (อธกิมาส). 
 

adhikavara  An indication as to whether or not a 
given year has an intercalary day in it.  Inter-
calary days are used to ensure that the lunar 
calendar keeps in step with the (mean) Moon.  In 

Thai it is adhikawan (อธกิวาร). 
 

ahargana  The number of elapsed days since 
the epoch. 
 

Anchansakarat era  One of the eras used in 
Thailand with epoch 10 March 691 BCE. 
 

Arakanese Calendar  A calendar used in Arakan.  
It is similar to the Makarata Calendar and having 
the same epoch 22 March 638 CE.  Instead of 
doubling Waso in an intercalary year, the Arak-
anese calendar doubles the first month Tagu. 
 

avoman  Thai อวมาน, Burmese အဝမာန ်.  The 
excess of lunar days over solar days in units of 
1/692 of a lunar day modulus 692.  It increases 
by 11 units each solar day.  It is used to 
determine when to add intercalary days in the 
calendar.  Sometimes in Burmese astronomy 
the avoman is expressed in units of 1/703 of a 
solar day. 
 

bath  Thai (บาท).  A Thai time unit equal to ¼ 
nadi or 15 vinadi. 
 

bizana  Burmese ဗီဇနာ.  See vinadi.  
 

Buddhasakarat era  One of the eras used in 
Thailand.  The epoch is 11 March 544 BCE. 
 

Burmese Era  The epoch of the Burmese Era is 
identical with the Thai ahargana, the number of 
elapsed days since the epoch CE 22 March 638. 
 

haragon  Burmese term for ahargana.  The term 
tawana is used more often. 
 

horakhun  Thai หรคฌุ. See ahargana. 

kammacabala  Thai (กมัมัขผล).  A quantity that 
gives the excess of solar days over whole solar 
days.  

Year Type W Wnext t1 

20 B 0 5 13 

21 A 5 2 23 

22 C 3→2 2→1 5→6 

23 A 1 5 16 

24 C 5 4 27 

25 B 4 2 8 

26 A 2 6 19 

27 C 6 5 1 

28 A 5 2 11 

29 A 2 6 22 

30 BC 0→6 6→5 4→5 

31 A 6→5 3 14→15B 

32 C 3 2 25 

33 A 2 6 7 

34 A 6 3 18 

35 BC 3 2 29 

36 A 3→2 0 9→10B 

37 A 0 4 21 

38 C 5→4 4→3 2→3 

39 A 3 0 13 

Year Type W Wnext t1 

20 B 0 5 13 

21 A 5 2 23 

22 C 3→2 2→1 5→6 

23 A 1 5 16 

24 C 5 4 27 

25 B 4 2 8 

26 A 2 6 19 

27 C 6 5 1 

28 A 5 2 11 

29 A 2 6→0 22B 

30 BC 0 6 4 

31 A 6 3 14 

32 C 3 2 25 

33 A 2 6 7 

34 A 6 3 18 

35 BC 3 2 29 

36 A 3→2 0 9→10B 

37 A 0 4 21 

38 C 5→4 4→3 2→3 

39 A 3 0 13 
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kromatopol  Khmer term for Thai kammacabala. 
 

kyammat  Burmese ကြမွတ်. See kammacabala. 
 

Mahasakarat era  An era used in Thailand.  Its 
epoch is the same as the Śaka era, CE 17 
March 78. 
 

masaken  Thai มาสเกณฑ.์ In Burma the term 
sandyamat (စန္ဒြမာယ)is used.  The number of 
elapsed lunar months since the epoch. 
 

modulus  A mathematical operation on an 
integer where an integer is divided by another 
integer and the modulus is the remainder.  
 

nadi  An Indian time measure with 60 nadi in a 
day and night.  In Thai it is nathi and in Burmese 
nayi.  It corresponds to 24 minutes. 
 

nakṣatra  A measure of the Moon‘s longitude 
where the zodiac is divided into 27 parts, each 
covering 13° 20′.  In Thai it is called rœk and in 
Burmese nekkhat. 
 

Pagan Kingdom  The first kingdom to unify the 
regions that would later be the present-day 
Burma.  From around the ninth century it ex-
panded from settlements at Pagan.  At the end 
of CE 1200 it was subject to several Mongol in-
vasions. 
 

nalika  Thai time unit corresponding to 60 
minutes. 
 

nathi  Thai นาท.ี See nadi. 
 

nayi  Burmese နာရီ. Se nadi. 
 

nekkhat  Burmese နက္ခတ်.  See nakṣatra. 
 

nyepi  The Balinese New Year day, the first day 
of month 10, Kadasa. 
 

pada  Thai time unit corresponding to 6 minutes. 
 

roek  Thai ฤกษ์. See nakṣatra. 
 

Romakasiddhānta  An Indian astronomical can-
on characterised by being the only Indian canon 
using Metonic intercalation. 
 

Śaka era  An Indian era with epoch CE 17 
March 78. See Mahasakarat era. 
 

Songkran  Thai สงกรานต ์from Sanskrit sankranti. 
Strictly, Songkran is the time when the Sun 
passes from any one sign to another, but the 
word is used more particularly in connection with 
its passage from Pisces to Aries (maha-
songkran). The precise time of Songkran is 
when the True Sun has a longitude of 0.  See 
further under thalœngsok. 
 

suryayatri  A set of computational rules for the 
Thai calendar based on the rules of the original 
Sūryasiddhānta albeit in a slightly simplified ver- 

sion. 
 

thalœngsok  Thai เถลงิศก.  More generally a word 
defining the start of an era; but used by astrol-
ogers to refer to the time when the Sun's mean 
longitude reaches 0°.  This moment defines the 
end of the New Year festival period.   
 

uccabala  A measure of the position of the 
Moon‘s apogee.  It increases by one unit a day 
to a maximum of 3232. 
 

vinadi  An Indian time measure being 1/60
th
 of a 

nadi. 
 

wan-gyi-tat  Burmese ဝါငယ်ထပ်.  A Burmese 
lunar year with an intercalated month and an 
intercalated day. 
 

wan-ngè-tat  Burmese ဝါကြီးထပ်. A Burmese 
lunar year with an intercalated month. 
 

yoga  An artificial quantity being the sum of the 
longitudes of the Sun and the Moon.  It is 
expressed as the possible 360° divided into 27 
parts, each spanning 13° 20′.  There are dozens 
of other kinds of yoga, but very little assistance 
is given by the handbooks as to how they are 
determined. 
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