Exoplanet and Life beyond Solar System

          In this key Science, NARIT searches for and studies of exoplanets, planets outside the solar system. NARIT is collaborating with major exoplanet exploration programs using NARIT telescope network. In order to understanding exoplanetary systems, researches on the systems’ properties such as physical properties of exoplanetary host stars, exoplanetary atmospheres and exomoons, have been performed. We also initiate Astrobiology in Thailand to looking for origin of life.

research ks 2566 03

 

Exoplanet detection

  • Exoplanet detections using transit, radial velocity and microlensing techniques
  • Development of exoplanet detection instruments (EvWaCo and EXOhSPEC)
  • Circumbinary exoplanet and exomoon detections

 

Exoplanet characterization

  • Exoplanet atmosphere
  • Chemical composition of exoplanet host star

 

SETI

  • SETI specific searching area

 

Research team

ks 03 staff 01
Supachai Awiphan

 

Position:

Researcher

E-mail:

This email address is being protected from spambots. You need JavaScript enabled to view it.

Education:

Ph.D. in  Astrophysics The University of Manchester, U.K.

Expertise:

Exoplanet, Exoplanet Atmosphere,
Exomoon,
Galactic structure

Publications:          

  • R. Rattanamala, (+ S. Awiphan), et al., Eclipse timing variations in the WD + dM eclipsing binary RR Cae, 2023, MNRAS, 523, 5086
  • Y.L. Mong, (+ S. Awiphan), et al., Self-supervised clustering on image-subtracted data with deep-embedded self-organizing map, 2023, MNRAS, 518, 75
  • S. Suphapolthaworn, (+ S. Awiphan), et al., Earth through the looking glass: how frequently are we detected by other civilizations through photometric microlensing?, 2022, MNRAS, 515, 592
  • E. Bachelet (+ S. Awiphan), et al., Euclid-Roman joint microlensing survey: Early mass measurement, free floating planets, and exomoons, 2022, A&A, 664, 136
  • D. Steeghs, (+ S. Awiphan), et al., The Gravitational-wave Optical Transient Observer (GOTO): prototype performance and prospects for transient science, 2022, MNRAS, 511, 2405
  • N. A-thano, (+ S. Awiphan), et al., The Transit Timing and Atmosphere of Hot Jupiter HAT-P-37b, 2022, AJ, 163, 77
  • K.A. Rybicki, (+ S. Awiphan), et al., Single-lens mass measurement in the high-magnification microlensing event Gaia19bld located in the Galactic disc, 2022, A&A, 657, 18
  • Y.L. Mong, (+ S. Awiphan), et al., Searching for Fermi GRB optical counterparts with the prototype Gravitational-wave Optical Transient Observer (GOTO), 2021, MNRAS, 507, 5463
  • U.F. Burhanudin, (+ S. Awiphan), et al., Light-curve classification with recurrent neural networks for GOTO: dealing with imbalanced data, 2021, MNRAS, 505, 4345
  • L. Makrygianni, (+ S. Awiphan), et al., Processing GOTO survey data with the Rubin Observatory LSST Science Pipelines II: Forced Photometry and lightcurves, 2021, 38, 25
  • E.M. Bryant, (+ S. Awiphan), et al., A transit timing variation observed for the long-period extremely low-density exoplanet HIP 41378 f, 2021, MNRAS 504, 45
  • T.L. Killestein, (+ S. Awiphan), et al., Transient-optimized real-bogus classification with Bayesian convolutional neural networks - sifting the GOTO candidate stream, 2021, MNRAS, 503, 4843
  • M.A. Alagao, (+ S. Awiphan), et al., Deep Contrast and Companion Detection Using the EvWaCo Test Bed Equipped with an Achromatic Focal Plane Mask and an Adjustable Inner Working Angle, 2021, AJ, 161, 208
  • J.R. Mullanet, (+ S. Awiphan), et al., Processing GOTO data with the Rubin Observatory LSST Science Pipelines I: Production of coadded frames, 2020, PASP, 38, 4
  • Y.L. Mong, (+ S. Awiphan), et al., Machine Learning for Transient Recognition in Difference Imaging With Minimum Sampling Effort, 2020, MNRAS, 499, 6009
  • K.D. Colon, (+ S. Awiphan), et al., An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub­Solar Water Abundance, 2020, AJ, 160, 280
  • J. Merc, (+ S. Awiphan), et al., Gaia18aen: First symbiotic star discovered by Gaia, 2020, A&A, 644, 49
  • D. Specht, (+ S. Awiphan), et al., MaBμlS-2: high-precision microlensing modelling for the large-scale survey era, 2020, MNRAS, 498, 2196
  • B.P. Gompertz, (+ S. Awiphan), et al., Searching for electromagnetic counterparts to gravitational-wave merger events with the prototype Gravitational-Wave Optical Transient Observer (GOTO-4), 2020, MNRAS, 497, 726
  • S. Antier, (+ S. Awiphan), et al., GRANDMA Observations of Advanced LIGO's and Advanced Virgo's Third Observational Campaign, 2020, MNRAS, 497, 5518
  • J.J.C. Hayes, (+ S. Awiphan), et al., Optimizing exoplanet atmosphere retrieval using unsupervised machine-learning classification, 2020, MNRAS, 494, 4492
  • L. Wyrzykowski, (+ S. Awiphan), et al., Full Orbital Solution for the Binary System in the Northern Galactic Disk Microlensing Event Gaia16aye, 2020, A&A, 633, 98
  • A. Fukui, (+ S. Awiphan), et al., Kojima-1Lb is a Mildly Cold Neptune around the Brightest Microlensing Host Star, 2019, AJ, 158, 206
  • J.E. Rodriguez, (+ S. Awiphan), et al., KELT-24b: A 5MJ Planet on a 5.6 day Well-Aligned Orbit around the Young V=8.3 F­star HD 93148, 2019, AJ, 158, 197
  • J. Morgan, E. Kerins, S. Awiphan, et al., Exoplanetary atmosphere target selection in the era of comparative planetology, 2019, MNRAS, 486, 896
  • K.A. Collins, (+ S. Awiphan), et al., The KELT Follow-Up Network and Transit False Positive Catalog: Pre-vetted False Positives for TESS, 2018, AJ, 156, 234
  • K.D. Colon, (+ S. Awiphan), et al., A Large Ground-based Observing Campaign of the Disintegrating Planet K2-22b, 2018, AJ, 156, 227
  • H. G. Lui, (+ S. Awiphan), et al., Searching for the Transit of the Earth-mass Exoplanet Proxima Centauri b in Antarctica: Preliminary Result, 2018, AJ, 155, 12
  • S. Awiphan, E. Kerins, S. Pichadee, et al., Transit timing variation and transmission spectroscopy analyses of hot Neptune GJ3470b, 2016, MNRAS, 463, 2574
  • S. Awiphan, E. Kerins and A.C. Robin, Besancon Galactic model analysis of MOA-II microlensing: evidence for a mass deficit in the inner bulge, 2016, MNRAS, 456, 1666
  • S. Awiphan and E. Kerins, The detectability of habitable exomoons with Kepler, 2013, MNRAS, 432, 2549

 

 

ks 03 staff 02
Sirinrat Sithajan

 

Position:

Researcher

E-mail:

This email address is being protected from spambots. You need JavaScript enabled to view it.

Education:

exoplanet detection and characterization

Expertise:

Meteorology, Atmospheric Physics, 
Atmospheric LiDAR Data Analysis,
Numerical Weather Prediction

Publications:          

  • Sithajan S. and Meethong S., Applied Machine-Learning Models to Identify Spectral Sub-Types of M Dwarfs from Photometric Surveys, 2023, PASP, 135:044502
  • Artsang P., (+Sithajan S.), et al., Design and Laboratory Performance of a Fiber-fed Fourier Transform Spectrograph Based on Off-the- shelf Components for Astronomical Medium and High-resolution Spectroscopy, 2022, Optical Engineering, Vol. 61, Issue 1, 014104
  • Errmann R.,  (+Sithajan S.), et al., HiFLEx—A Highly Flexible Package to Reduce Cross-dispersed Echelle Spectra, 2020, PASP ,132:064504
  • Lhospice E., (+Sithajan S.), et al., EXOhSPEC folded design optimization and performance estimation, 2019, Proc. of SPIE, Vol. 11117 111170Z-1
  • Ma B., (+Sithajan S.), et al., The first super-Earth Detection from the High Cadence and High Radial Velocity Precision Dharma Planet Survey, 2018, MNRAS, Vol. 480, Issue 2, Pages 2411–2422 
  • Grieves N., (+Sithajan S.), et al., Exploring the brown dwarf desert: New substellar companions from the SDSS-III MARVELS survey, 2017, MNRAS, Volume 467, Issue 4, June 2017, Pages 4264–4281
  • Ma B., (+Sithajan S.), et al., Very Low-Mass Stellar and Substellar Companions to Solar-like Stars From MARVELS VI: A Giant Planet and a Brown Dwarf Candidate in a Close Binary System HD 87646, 2016, AJ, Volume 152, Number 5
  • Thomas N., (+Sithajan S.), et al., MARVELS 1D pipeline development, optimization, and performance, 2016, PASP, Volume 128, Number 962  
  • Ge J.,  (+Sithajan S.), et al., On-sky Doppler performance of TOU optical very high-resolution spectrograph for detecting low-mass planets, 2016, Proc. of SPIE, Vol. 9908

 

Facilities

Thai National Telescope 2.4 M
Thai Robotic Telescope Network 0.7 M

 

Collaborators

  1. Chiangmai University, Thailand
  2. Suranaree University of Technology, Thailand
  3. Mahidol University, Thailand
  4. Chulalongkorn University, Thailand
  5. University of Manchester, U.K.
  6. University of Hertfordshire, U.K.
  7. National Tsing Hua University
  8. Université de Franche-Comté, France
  9. University of Florida, USA
  10. Aryabhatta Research Institute of Observational Sciences
  11. National Astronomical Observatories, Chinese Academy of Sciences
  12. National Astronomical Observatory of Japan